EC Nutrition

Review Article Volume 19 Issue 1 - 2024

Exploring the Therapeutic Potential of Plant Seeds: Health Benefits, Bioactive Compounds, Applications for Specific Medical Conditions, and Regulatory Challenges

John V Flores1, Nicholas A Kerna2,3*, Kevin D Pruitt4,5, ND Victor Carsrud6, Hilary M Holets1, Sudeep Chawla7, Dabeluchi C Ngwu8,9, Wail Taha Mohammed Taha10, Joseph Anderson II11, Adebola Y Afolayan12 and Ijeoma Nnake13

1Orange Partners Surgicenter, USA
2Independent Global Medical Researchers Consortium
3First InterHealth Group, Thailand
4Kemet Medical Consultants, USA
5PBJ Medical Associates, LLC, USA
6Lakeline Wellness Center, USA
7Chawla Health and Research, USA
8FMC Umuahia with King Abdullah Hospital, Bisha, Saudi Arabia
9Earthwide Surgical Missions, Nigeria
10School of Medicine, Al Fashir University, Sudan
11International Institute of Original Medicine, USA
12Triboro Center for Nursing and Rehabilitation, USA
13Simplex Care Inc., USA
*Corresponding Author: Nicholas A Kerna, (mailing address) POB47 Phatphong, Suriwongse Road, Bangkok, Thailand 10500. Contact: medpublab+drkerna@gmail.com
Received: August 08, 2023; Published: December 02, 2023



Plant seeds have been used for thousands of years for their nutritional, medicinal, and culinary benefits. Contemporary medical research is investigating plant seeds' therapeutic potential for improving and treating human diseases.

Plant seeds contain bioactive components such as phytochemicals, polyphenols, and lignans, which express antioxidant, anti-inflammatory, antimicrobial, and antibacterial effects. They are being studied for their potential to treat various medical afflictions, including hyperglycemia and diabetes, respiratory and cardiovascular disorders, and eye and skin disorders. Clinical trials are investigating the therapeutic value of various plant seeds-based drugs to act on inflammation, cancer, infectious diseases, and autoimmune disorders. Plant seed extracts have also been found to exhibit antitumor effects.

However, limitations and challenges exist for using plant seeds in medical care. Standardization in seed preparation is crucial to ensure safety and efficacy. The lack of awareness of appropriate dosages for treatment and lack of quality control in production raise concerns about adverse health outcomes with their use. Regulatory challenges remain to incorporate plant seeds-based treatments in medical care and develop practical and comprehensive guidelines for their use. Clinical studies remain limited regarding the therapeutic potential of plant seeds.

Also noted in this paper is plant seeds' potential as an alternative to synthetic pharmaceuticals. Their natural availability makes them a promising source for developing low-cost treatment options and improving quality of life (QoL).

 Keywords: Antioxidant; Bioactive Compounds; Healing; Hyperlipidemia; Micronutrients; Plant-Based Treatments

  1. Hardy K. “Plant use in the lower and middle palaeolithic: Food, medicine and raw materials”. Quaternary Science Reviews 191 (2018): 393-405. https://www.sciencedirect.com/science/article/abs/pii/S0277379117308399
  2. Ros E and Hu FB. “Consumption of plant seeds and cardiovascular health”. Circulation5 (2013): 553-565. https://pubmed.ncbi.nlm.nih.gov/23897849/
  3. Jamshidi-Kia F., et al. “Medicinal plants: Past history and future perspective”. Journal of Herbmed Pharmacology1 (2017): 1-7. https://herbmedpharmacol.com/Article/jhp-1198
  4. Raskin I., et al. “Plants and human health in the twenty-first century”. Trends in Biotechnology 12 (2002): 522-531. https://pubmed.ncbi.nlm.nih.gov/12443874/
  5. Johns T. “The origins of human diet and medicine: Chemical ecology”. University of Arizona Press (1990). https://www.jstor.org/stable/j.ctv1qwwj2q
  6. Sharifi-Rad J., et al. “Paclitaxel: Application in modern oncology and nanomedicine-based cancer therapy”. Oxidative Medicine and Cellular Longevity (2021): 3687700. https://pubmed.ncbi.nlm.nih.gov/34707776/
  7. Touré A and Xueming X. “Flaxseed lignans: Source, biosynthesis, metabolism, antioxidant activity, bio-active components, and health benefits”. Comprehensive Reviews in Food Science and Food Safety 3 (2010): 261-269. https://pubmed.ncbi.nlm.nih.gov/33467817/
  8. Weseler AR and Bast A. “Masquelier’s grape seed extract: from basic flavonoid research to a well-characterized food supplement with health benefits”. Nutrition Journal 1 (2017): 5. https://pubmed.ncbi.nlm.nih.gov/28103873/
  9. Cevallos-Casals BA and Cisneros-Zevallos L. “Impact of germination on phenolic content and antioxidant activity of 13 edible seed species”. Food Chemistry4 (2010): 1485-1490. https://www.sciencedirect.com/science/article/abs/pii/S0308814609010747
  10. Farooq M., et al. “Micronutrient application through seed treatments: a review”. Journal of Soil Science and Plant Nutrition 1 (2012): 125-142. https://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0718-95162012000100011
  11. Raboy V. “Seeds for a better future: “Low phytate” grains help to overcome malnutrition and reduce pollution”. Trends in Plant Science 10 (2001): 458-462. https://pubmed.ncbi.nlm.nih.gov/11590064/
  12. Gatlin DM., et al. “Expanding the utilization of sustainable plant products in aquafeeds: a review”. Aquaculture Research 6 (2007): 551-579. https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1365-2109.2007.01704.x
  13. Shareef M and Sohail Akhtar M. “Neem (Azadirachta indica) and its potential for safeguarding health, prevention and treatment of diseases”. Matrix Science Medica1 (2018): 04-08. https://www.researchgate.net/publication/326152913_NEEM_AZADIRACHTAINDICA_AND_ITS_POTENTIAL_FOR_SAFEGUARDING_HEALTH_PREVENTION_AND_TREATMENT_OF_DISEASES
  14. Kumar VS and Navaratnam V. “Neem (Azadirachta indica): Prehistory to contemporary medicinal uses to humankind”. Asian Pacific Journal of Tropical Biomedicine 7 (2013): 505-514. https://pubmed.ncbi.nlm.nih.gov/23835719/
  15. El-Mahmood AM., et al. “The antibacterial activity of Azadirachta indica (neem) seeds extracts against bacterial pathogens associated with eye and ear infections”. Journal of Medicinal Plants Research14 (2010): 1414-1421. https://www.researchgate.net/publication/267238019_The_antibacterial_activity_of_Azadarichta_indica_neem_seeds_extracts_against_bacterial_pathogens_associated_with_eye_and_ear_infections
  16. Sudhir Kumar P., et al. “Medicinal uses and pharmacological properties of Moringa oleifera”. International Journal of Phytomedicine3 (2010): 210-216. https://www.researchgate.net/publication/286332951_Medicinal_uses_and_pharmacological_properties_of_Moringa_oleifera
  17. Leone A., et al. “Moringa oleifera seeds and oil: Characteristics and uses for human health”. International Journal of Molecular Sciences12 (2016): 2141. https://pubmed.ncbi.nlm.nih.gov/27999405/
  18. Anwar F., et al. “Moringa oleifera: a food plant with multiple medicinal uses”. Phytotherapy Research1 (2007): 17-25. https://pubmed.ncbi.nlm.nih.gov/17089328/
  19. Gopalakrishnan L., et al. “Moringa oleifera: A review on nutritive importance and its medicinal application”. Food Science and Human Wellness2 (2016): 49-56. https://www.sciencedirect.com/science/article/pii/S2213453016300362
  20. Udechukwu M., et al. “Potential of Moringa oleifera seeds and leaves as functional food ingredients for human health promotion”. Journal of Food and Nutrition Research1 (2018). https://www.researchgate.net/publication/323391879_Potential_of_Moringa_oleifera_seeds_and_leaves_as_functional_food_ingredients_for_human_health_promotion
  21. Tripathi A., et al. “Medicinal properties of Moringa oleifera: A review”. International Journal of Education and Science Research Review 3 (2016): 173-185. https://www.researchgate.net/publication/304897997_MEDICINAL_PROPERTIES_OF_Moringa_oleifera_A_REVIEW
  22. Ahmad A., et al. “A review on therapeutic potential of Nigella sativa: A miracle herb”. Asian Pacific Journal of Tropical Biomedicine 5 (2013): 337-352. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3642442/
  23. Sabzghabaee AM., et al. “Clinical evaluation of Nigella sativa seeds for the treatment of hyperlipidemia: a randomized, placebo controlled clinical trial”. Medical Archives 3 (2012): 198-200. https://pubmed.ncbi.nlm.nih.gov/22822623/
  24. Tariq M. “Nigella sativa seeds: Folklore treatment in modern day medicine”. Saudi Journal of Gastroenterology 3 (2008): 105-106. https://pubmed.ncbi.nlm.nih.gov/19568515/
  25. Ferizi R., et al. “Black seeds (Nigella sativa) medical application and pharmaceutical perspectives”. Journal of Pharmacy and Bioallied Sciences 2 (2023): 63-67. https://pubmed.ncbi.nlm.nih.gov/37469646/
  26. Yimer EM., et al. “Nigella sativa (Black Cumin): A promising natural remedy for wide range of illnesses”. Evidence-based Complementary and Alternative Medicine (2019): 1528635. https://pubmed.ncbi.nlm.nih.gov/31214267/
  27. Fatima Shad K., et al. “The role of thymoquinone, a major constituent of Nigella sativa, in the treatment of inflammatory and infectious diseases”. Clinical and Experimental Pharmacology and Physiology 11 (2021): 1445-1453. https://pubmed.ncbi.nlm.nih.gov/34297870/
  28. Tavakkoli A., et al. “Review on clinical trials of black seed (Nigella sativa) and its active constituent, thymoquinone”. Journal of Pharmacopuncture 3 (2017): 179-193. https://pubmed.ncbi.nlm.nih.gov/30087794/
  29. Neycee MA., et al. “Evaluation of antibacterial effects of chinaberry (Melia azedarach) against gram-positive and gram-negative bacteria”. International Journal of Agronomy and Plant Production 3 (2012): 153-160. https://www.cabidigitallibrary.org/doi/pdf/10.5555/20123384633
  30. Kebede Y., et al. “Laboratory and field evaluation of neem (Azadirachta indica Juss) and Chinaberry (Melia azedarach L.) oils as repellents against Phlebotomus orientalis and P. bergeroti (Diptera: Psychodidae) in Ethiopia”. Acta Tropica 113.2 (2010): 145-150. https://pubmed.ncbi.nlm.nih.gov/19854142/
  31. Dadé M., et al. “Repellent and lethal activities of extracts from fruits of chinaberry (Melia azedarach, Meliaceae) against Triatoma infestans”. Frontiers in Veterinary Science 5 (2018): 158. https://pubmed.ncbi.nlm.nih.gov/30094242/
  32. Abiy E., et al. “Repellent efficacy of DEET, MyggA, neem (Azadirachta indica) oil and chinaberry (Melia azedarach) oil against Anopheles arabiensis, the principal malaria vector in Ethiopia”. Malaria Journal 1 (2015): 187. https://pubmed.ncbi.nlm.nih.gov/25935845/
  33. Ferreiro D., et al. “Chinaberry tree (Melia azedarach) poisoning in dog: A case report”. Topics in Companion Animal Medicine 1 (2010): 64-67. https://pubmed.ncbi.nlm.nih.gov/20188341/
  34. Mbata TI., et al. “Antibacterial activity of crude seed extracts of Buchholzia coriacea on some pathogenic bacteria”. Journal of Developmental Biology and Tissue Engineering 1.1 (2009): 1-5. https://www.researchgate.net/publication/266339001_Antibacterial_activity_of_crude_seed_extracts_of_Buchholzia_coriacea_E_on_some_pathogenic_bacteria
  35. Teshome A., et al. “Laboratory-based efficacy evaluation of Bacillus thuringiensis var. israelensis and temephos larvicides against larvae of Anopheles stephensi in Ethiopia”. Malaria Journal 1 (2023): 1-8. https://malariajournal.biomedcentral.com/articles/10.1186/s12936-023-04475-9
  36. Mobin L., et al. “Antibacterial and antifungal activities of the polyphenolic fractions isolated from the seed coat of Abrus precatorius and Caesalpinia crista”. Natural Product Research 23 (2018): 2835-2839. https://pubmed.ncbi.nlm.nih.gov/28948833/
  37. Kuete V. “Physical, hematological, and histopathological signs of toxicity induced by African medicinal plants”. Toxicological Survey of African Medicinal Plants (2014): 635-657. https://www.sciencedirect.com/science/article/abs/pii/B9780128000182000224
  38. Kaur I., et al. “Balsamin, a novel ribosome-inactivating protein from the seeds of Balsam apple Momordica balsamina”. Amino Acids2 (2012): 973-981. https://pubmed.ncbi.nlm.nih.gov/22120616/
  39. Olalere OA and Gan CY. “Multi-step reflux extraction of bio-pharmaceutical phenolic bioactives from balsam apple (Momordica balsamina)”. Journal of Taibah University for Science 14.1 (2020): 227-234. https://www.tandfonline.com/doi/full/10.1080/16583655.2020.1721722
  40. Ibrahim Ahmed Osman A and Elshifa Mohammed Elhassan Mohammed A. “Antibacterial activity and phytochemical studies of balsam apple (Momordica balsamina. Linn) commonly used in North Darfur Sudan against selected pathogenic microorganisms”. NeuroQuantology17 (2022): 1952-1957. https://www.proquest.com/openview/cad9751f7ef017f0c9dc4d8cfef581e5/1?pq-origsite=gscholar&cbl=2035897
  41. Morton JF. “The balsam pear-an edible, medicinal and toxic plant”. Economic Botany 1 (1967): 57-68. https://link.springer.com/article/10.1007/BF02897176
  42. Delshad E., et al. “Medical uses of Carthamus tinctorius (Safflower): a comprehensive review from traditional medicine to modern medicine”. Electron Physician 10.4 (2018): 6672-6681. https://pubmed.ncbi.nlm.nih.gov/29881530/
  43. Nazir M., et al. “Safflower (Carthamus tinctorius) seed”. Oilseeds: Health Attributes and Food Applications (2020): 427-453. https://www.researchgate.net/publication/345940587_Safflower_Carthamus_tinctorius_Seed
  44. Mahleyuddin NN., et al. “Coriandrum sativum: A review on ethnopharmacology, phytochemistry, and cardiovascular benefits”. Molecules 27.1 (2022): 209. https://pubmed.ncbi.nlm.nih.gov/35011441/
  45. Oudah IM and Ali YH. “Evaluation of aqueous and ethanolic extraction for coriander seeds, leaves and stems and studying their antibacterial activity”. Iraqi National Journal of Nursing Specialties2 (2010): 2010. https://injns.uobaghdad.edu.iq/index.php/INJNS/article/view/65/55
  46. Kumar Assistant Professor NS., et al. “The surprising health benefits of papaya seeds: A review”. Journal of Pharmacognosy and Phytochemistry 1 (2017): 424-429. https://www.phytojournal.com/archives/2017/vol6issue1/PartF/5-6-25-896.pdf
  47. Agada R., et al. “Antioxidant and anti-diabetic activities of bioactive fractions of Carica papaya seeds extract”. Journal of King Saud University - Science 2 (2021): 101342. https://www.sciencedirect.com/science/article/pii/S1018364721000033
  48. Dotto JM and Abihudi SA. “Nutraceutical value of Carica papaya: A review”. Scientific African 13 (2021): e00933. https://www.sciencedirect.com/science/article/pii/S2468227621002374
  49. Devaraj RD., et al. “Phytochemistry and health promoting effects of Job’s tears (Coix lacryma-jobi) - A critical review”. Food Bioscience 34 (2020): 100537. https://www.sciencedirect.com/science/article/abs/pii/S2212429218308575
  50. Manosroi A., et al. “Potent in vitro anti-proliferative, apoptotic and anti-oxidative activities of semi-purified Job’s tears (Coix lacryma-jobi) extracts from different preparation methods on 5 human cancer cell lines”. Journal of Ethnopharmacology 187 (2016): 281-292. https://pubmed.ncbi.nlm.nih.gov/27125591/
  51. Chhabra D and Gupta RK. “Formulation and phytochemical evaluation of nutritional product containing Job’s tears (Coix lacryma-Jobi)”. Journal of Pharmacognosy and Phytochemistry 4.3 (2015): 291-298. https://www.phytojournal.com/archives/2015/vol4issue3/PartD/4-3-51-740.pdf
  52. Bagul MB., et al. “Bioactive characteristics and optimization of tamarind seed protein hydrolysate for antioxidant-rich food formulations”. 3 Biotech4 (2018): 218. https://pubmed.ncbi.nlm.nih.gov/29719768/
  53. Biswas P., et al. “Betelvine (Piper betle): A comprehensive insight into its ethnopharmacology, phytochemistry, and pharmacological, biomedical and therapeutic attributes”. Journal of Cellular and Molecular Medicine 26.11 (2022): 3083-3119. https://pubmed.ncbi.nlm.nih.gov/35502487/
  54. Garg A., et al. “A review of the systemic adverse effects of areca nut or betel nut”. Indian Journal of Medical and Paediatric Oncology 1 (2014): 3-9. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4080659/
  55. Paudel KR and Panth N. “Phytochemical profile and biological activity of Nelumbo nucifera”. Evidence-Based Complementary and Alternative Medicine (2015): 789124. https://pubmed.ncbi.nlm.nih.gov/27057194/
  56. Akhone MA., et al. “Apricot kernel: Bioactivity, characterization, applications, and health attributes”. Foods15 (2022): 2184. https://pubmed.ncbi.nlm.nih.gov/35892769/
  57. Jaszczak-Wilke E., et al. “Amygdalin: Toxicity, anticancer activity and analytical procedures for its determination in plant seeds”. Molecules8 (2021): 2253. https://pubmed.ncbi.nlm.nih.gov/33924691/
  58. Jabeen Q and Aslam N. “The pharmacological activities of prunes: The dried plums”. Journal of Medicinal Plants Research9 (2011): 1508-1511. https://academicjournals.org/article/article1380546523_Jabeen%20and%20Aslam.pdf
  59. Chen J., et al. “A review of dietary Ziziphus jujuba fruit (Jujube): Developing health food supplements for brain protection”. Evidence-Based Complementary and Alternative Medicine (2017): 3019568. https://pubmed.ncbi.nlm.nih.gov/28680447/
  60. Ali MY., et al. “Phytochemistry, ethnopharmacological uses, biological activities, and therapeutic applications of Cassia obtusifolia: A comprehensive review”. Molecules 26.20 (2021): 6252. https://pubmed.ncbi.nlm.nih.gov/34684833/
  61. Ju MS., et al. “Cassiae semen, a seed of Cassia obtusifolia, has neuroprotective effects in Parkinson’s disease models”. Food and Chemical Toxicology8-9 (2010): 2037-2044. https://pubmed.ncbi.nlm.nih.gov/20457209/
  62. Kumari N., et al. “Peach (Prunus persica (L.) Batsch) seeds and kernels as potential plant-based functional food ingredients: A review of bioactive compounds and health-promoting activities”. Food Bioscience 54 (2023): 102914. https://www.sciencedirect.com/science/article/abs/pii/S2212429223005655
  63. Bento C., et al. “Peach (Prunus persica): Phytochemicals and health benefits”. Food Reviews International8 (2022): 1703-1734. https://www.tandfonline.com/doi/abs/10.1080/87559129.2020.1837861
  64. Leyva DR., et al. “Medicinal use of hempseeds (Cannabis sativa): Effects on platelet aggregation”. Nuts and Seeds in Health and Disease Prevention (2011): 637-646. https://www.sciencedirect.com/science/article/abs/pii/B978012375688610074X
  65. Vasantha Rupasinghe HP., et al. “Industrial hemp (Cannabis sativa subsp. sativa) as an emerging source for value-added functional food ingredients and nutraceuticals”. Molecules18 (2020): 4078. https://pubmed.ncbi.nlm.nih.gov/32906622/
  66. Pandey S and Singh S. “Exploring phytoconstituents and pharmacological profile of Codiaeum variegatum (L.), Garden croton”. Pharmacological Research - Modern Chinese Medicine 9 (2023): 100327. https://ouci.dntb.gov.ua/en/works/4bwxZQZl/
  67. Saffoon N., et al. “In vitro anti-oxidant activity and HPLC-DAD system based phenolic content analysis of codiaeum variegatum found in Bangladesh”. Advanced Pharmaceutical Bulletin 2 (2014): 533-541. https://pubmed.ncbi.nlm.nih.gov/25671186/
  68. Ibrahim SRM and Mohamed GA. “Litchi chinensis: medicinal uses, phytochemistry, and pharmacology”. Journal of Ethnopharmacology 174 (2015): 492-513. https://pubmed.ncbi.nlm.nih.gov/26342518/
  69. Saisavoey T., et al. “Anti-Inflammatory effects of lychee (Litchi chinensis) seed peptide hydrolysate on RAW 264.7 macrophage cells”. Food Biotechnology 32.2 (2018): 79-94. https://www.tandfonline.com/doi/abs/10.1080/08905436.2018.1443821
  70. Najafian Y., et al. “Plantago major in Traditional Persian Medicine and modern phytotherapy: a narrative review”. Electron Physician2 (2018): 6390-6399.
  71. Nazarizadeh A., et al. “Therapeutic uses and pharmacological properties of Plantago major and its active constituents”. Journal of Basic and Applied Scientific Research 3.9 (2013). https://www.researchgate.net/publication/256494446_Therapeutic_Uses_and_Pharmacological_Properties_of_Plantago_major_L_and_its_Active_Constituents
  72. Shao S., et al. “Ear plaster therapy as a safe and effective treatment for gestational vomiting”. Journal of Visualized Experiments 198 (2023): e65549. https://pubmed.ncbi.nlm.nih.gov/37677019/
  73. Zhou G., et al. “Phytochemistry and pharmacological activities of Vaccaria hispanica (Miller) Rauschert: a review”. Phytochemistry Reviews5 (2016): 813-827. https://link.springer.com/article/10.1007/s11101-015-9425-1
  74. Zhou G., et al. “C-glycosylflavone with rotational isomers from Vaccaria hispanica (Miller) Rauschert seeds”. Phytochemistry Letters 19 (2017): 241-247. https://www.sciencedirect.com/science/article/abs/pii/S1874390017300757
  75. Góral I., et al. “Surface activity of the oat, horse chestnut, cowherb, soybean, quinoa and soapwort extracts – Is it only due to saponins?” Colloid and Interface Science Communications 42 (2021): 100400. https://www.sciencedirect.com/science/article/abs/pii/S2215038221000406
  76. Kumar GR., et al. “Evaluation of in-vitro antioxidant property and total phenolic content of Zanthoxylum rhetsa fruit extracts”. Journal of Pharmacognosy and Phytochemistry 3 (2019): 1139-1144. https://www.phytojournal.com/archives/2019/vol8issue3/PartU/8-2-165-825.pdf
  77. Santhanam RK., et al. “Bioactive constituents of Zanthoxylum rhetsa bark and its cytotoxic potential against B16-F10 melanoma cancer and normal human dermal fibroblast (HDF) cell lines”. Molecules6 (2016): 652. https://pubmed.ncbi.nlm.nih.gov/27231889/
  78. Shanker A., et al. “Unlocking the pharmacological potential of Zanthoxylum rhetsa: A multifaceted medicinal plant”. The Pharma Innovation Journal11 (2023): 1061-1064. https://www.thepharmajournal.com/archives/2023/vol12issue11/PartM/12-11-62-636.pdf
  79. Rahmatullah M., et al. “A survey of medicinal plants used by kavirajes of chalna area, Khulna district, Bangladesh”. African Journal of Traditional, Complementary and Alternative Medicines2 (2010): 91-97. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3021158/
  80. Das S., et al. “Okra and its various applications in drug delivery, food technology, health care and pharmacological aspects-a review”. Journal of Pharmaceutical Sciences and Research6 (2019): 2139-2147. https://www.jpsr.pharmainfo.in/Documents/Volumes/vol11issue06/jpsr11061905.pdf
  81. Barman A., et al. “Nutraceutical properties of legume seeds and their impact on human health”. Legume Seed Nutraceutical Research (2018). https://www.intechopen.com/chapters/62638
  82. Sumara A., et al. “Comprehensive review of seven plant seed oils: chemical composition, nutritional properties, and biomedical functions”. Food Reviews International8 (2023): 5402-5422. https://www.tandfonline.com/doi/abs/10.1080/87559129.2022.2067560
  83. Flores-Balderas X., et al. “Beneficial effects of plant-based diets on skin health and inflammatory skin diseases”. Nutrients13 (2023): 2842. https://pubmed.ncbi.nlm.nih.gov/37447169/
  84. Shedayi AA and Gulshan B. “Ethnomedicinal uses of plant resources in Gilgit-Baltistan of Pakistan”. Journal of Medicinal Plants Research29 (2012): 4540-4549. https://www.researchgate.net/publication/261764280_Ethnomedicinal_uses_of_plant_resources_in_Gilgit-Baltistan_of_Pakistan
  85. Bezerra JJL., et al. “Medicinal plants used in the treatment of asthma in different regions of Brazil: A comprehensive review of ethnomedicinal evidence, preclinical pharmacology and clinical trials”. Phytomedicine Plus4 (2022): 100376. https://www.sciencedirect.com/science/article/pii/S2667031322001555
  86. Vončina M., et al. “Adverse effects and intoxications related to medicinal/harmful plants”. Acta Agriculturae Slovenica 2 (2014): 263-270. http://ojs.aas.bf.uni-lj.si/index.php/AAS/article/view/84
  87. Fraunfelder FW. “Ocular side effects from herbal medicines and nutritional supplements”. American Journal of Ophthalmology 4 (2004): 639-647. https://pubmed.ncbi.nlm.nih.gov/15488795/
  88. Foster R., et al. “Briefing paper: Culinary oils and their health effects”. Nutrition Bulletin 1 (2009): 4-47. https://onlinelibrary.wiley.com/doi/full/10.1111/j.1467-3010.2008.01738.x
  89. Ros E and Hu FB. “Consumption of plant seeds and cardiovascular health”. Circulation5 (2013): 553-565. https://pubmed.ncbi.nlm.nih.gov/23897849/
  90. Ghorbani A. “Best herbs for managing diabetes: a review of clinical studies”. Brazilian Journal of Pharmaceutical Sciences3 (2013): 413-422. https://www.scielo.br/j/bjps/a/pBCgKTMTg86rgQpVXy6tbvy/
  91. Mohtashami R., et al. “Blood glucose lowering effects of Nigella sativa seeds oil in healthy volunteers: a randomized, double-blind, placebo-controlled clinical trial”. Journal of Medicinal Plants 10.39 (2011): 90-94. http://jmp.ir/browse.php?a_id=205&sid=1&slc_lang=en
  92. Balakrishna R., et al. “Consumption of nuts and seeds and health outcomes including cardiovascular disease, diabetes and metabolic disease, cancer, and mortality: an umbrella review”. Advances in Nutrition6 (2022): 2136-2148. https://pubmed.ncbi.nlm.nih.gov/36041171/
  93. Mohammed A. “Hypoglycemic potential of African medicinal plants in diabetic and non-diabetic human subjects: a review”. Clinical Complementary Medicine and Pharmacology2 (2023): 100081. https://www.sciencedirect.com/science/article/pii/S2772371223000037
  94. Kunle OF., et al. “Standardization of herbal medicines-A review”. International Journal of Biodiversity and Conservation 3 (2012): 101-112. https://academicjournals.org/article/article1380017716_Kunle%20et%20al.pdf
  95. Calixto JB. “Efficacy, safety, quality control, marketing and regulatory guidelines for herbal medicines (phytotherapeutic agents)”. Brazilian Journal of Medical and Biological Research2 (2000): 179-189. https://pubmed.ncbi.nlm.nih.gov/10657057/
  96. Giddings G., et al. “Transgenic plants as factories for biopharmaceuticals”. Nature Biotechnology11 (2000): 1151-1155. https://pubmed.ncbi.nlm.nih.gov/11062432/
  97. Ma JKC., et al. “Regulatory approval and a first-in-human phase I clinical trial of a monoclonal antibody produced in transgenic tobacco plants”. Plant Biotechnology Journal 8 (2015): 1106-1120. https://pubmed.ncbi.nlm.nih.gov/26147010/
  98. Mentreddy SR. “Medicinal plant species with potential antidiabetic properties”. Journal of the Science of Food and Agriculture 5 (2007): 743-750. https://onlinelibrary.wiley.com/doi/10.1002/jsfa.2811
  99. Esmaillzadeh A., et al. “The effect of purslane seeds on glycemic status and lipid profiles of persons with type 2 diabetes: A randomized controlled cross-over clinical trial”. Journal of Research in Medical Sciences 1 (2015): 47-53. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4354065/
  100. Clair S. “The challenges in regulating traditional plant medicines in the era of contemporary evidence-based health policy”. University of Canterbury (2019). https://ir.canterbury.ac.nz/items/4f38c2d5-d789-4b79-9906-e823470246a0
  101. Picking D. “The global regulatory framework for medicinal plants”. Pharmacognosy: Fundamentals, Applications, and Strategies, Second Edition (2024): 769-782. https://www.researchgate.net/publication/377038798_The_global_regulatory_framework_for_medicinal_plants
  102. Wieland P. “The traditional herbal medicine directive within the European regulatory framework for herbal products”. Boletín Latinoamericano y del Caribe de Plantas Medicinales y Aromáticas 4 (2007): 102-111. https://www.redalyc.org/pdf/856/85660403.pdf

Nicholas A Kerna., et al. “Exploring the Therapeutic Potential of Plant Seeds: Health Benefits, Bioactive Compounds, Applications for Specific Medical Conditions, and Regulatory Challenges”. EC Nutrition  19.1 (2024): 01-17.