EC Pulmonology and Respiratory Medicine

Research Article Volume 8 Issue 9 - 2019

Diagnosis and Drug Susceptibility of Mycobacterium tuberculosis from Pulmonary Specimens at Pasteur Institute of Algeria: Comparative Study between Classic Lowenstein-Jensen Culture and BACTEC MGIT 960 System

Ferhat Djoudi1*, Dalila Benremila1,2, Sabrina Kassa1, Massilva Messaoudi1 , Nadir Mezidi2 , Mounir Khechida2, Rym Touati2, Randa Yahi2 and Djamal Yala 2

1 Laboratoire d’Ecologie Microbienne, Faculté des Sciences de la Nature et de la Vie, Université de Bejaia, Route de Targa-Ouzemour, Bejaia, Algeria

2 Laboratoire National de référence de la Tuberculose et des Mycobactéries, Institut Pasteur d’Algérie, 01, Rue Dr. Lavaran El-Hamma, Alger, Algeria

*Corresponding Author: Ferhat Djoudi, Laboratoire d’Ecologie Microbienne, Faculté des Sciences de la Nature et de la Vie, Université de Bejaia, Route de Targa-Ouzemour, Bejaia, Algeria.
Received: January 31, 2019; Published:August 26, 2019



Background: Tuberculosis is an old infectious disease and the causative agent is Mycobacterium tuberculosis complex. The direct
diagnosis stills long and fastidious since microscopic examination, with Ziehl-Neelsen (Z-N) staining, even fast, lacks sensitivity. The
culture on Lowenstein-Jensen (L-J), a reference method, sometimes takes up to ten weeks to obtain the result. In order to compensate
the slow growth of cultures on solid media, new automated methods have been developed, including BACTEC MGIT 960, VERSA TREK,
MBREDOX, BACTEC 460, allowing early diagnosis and drugs susceptibility testing, in addition to their good sensitivity and specificity.
Materials and Methods: The aim of this study is to verify the contribution of BACTEC MGIT 960 in the diagnosis of pulmonary tu-
berculosis, compared to microscopic examination and culture on L-J medium, at the tuberculosis and mycobacteria unite in Pasteur
Institute of Algeria. Nine hundred and fourteen specimens were collected between January 2016 and April 2017. One hundred and
seventy nine reported positive L-J culture and/or BACTEC MGIT 960.
Results and Discussion: Among the 179 cases, 155 were detected by the BACTEC MGIT 960 and confirmed by Ziehl control, L-J sub-
culture and MPT64 immuno-chromatographic assay. On classic culture and Z-N staining, nevertheless, only 123 and 95 specimens
respectively were positive. These results confirm the high susceptibility of BACTEC MGIT 960 in improving the diagnosis of tuber-
culosis in bacilli-poor specimens, compared to classic culture (p = 0.037) and direct examination (p = 0.014). Contamination rate
was higher in L-J culture: 81/914 (8.86%), including 7 microscopic examination positive cases, whereas, in BACTEC MGIT 960, only
29/914 (3.17%) specimens were contaminated, with no positive microscopic examination cases.
Conclusions: The main advantage of BACTEC MGIT 960 is its ability to shorten the time of growth to an average of 7 days, compared
to the solid medium. Nevertheless, there is an incompressible risk of contamination. Bacilloscopy and L-J culture remain complemen-
tary to this automat for a reliable diagnosis.
Keywords: Tuberculosis; BACTEC MGIT 960; Microscopic Examination of Ziehl-Neelsen (Z-N) Staining Lowenstein-Jensen Culture

  1. Gutierrez MC., et al. “Ancient origin and gene mosaicism of the progenitor of Mycobacterium tuberculosis”. PLOS Pathogens 1 (2005): e5.
  2. Wirth T., et al. “Origin, spread and demography of the Mycobacterium tuberculosis complex”. PLOS Pathogens 4 (2008): e1000160.
  3. Russell DG., et al. “Foamy macrophages and the progression of the human tuberculosis granuloma”. Nature Immunology 10 (2009): 943-948.
  4. “Rapport 2015 sur la lutte contre la tuberculose dans le monde” (2015).
  5. Kanai K. “Introduction to Tuberculosis and Mycobacteria”. SEAMIC/IMFJ. Tokyo”. Japan (1990): 221.
  6. Lévy-Frébault V. “Méthodes rapides de détection et de diagnostic des mycobactéries, Actualités et perspectives”. Médecine et Maladies Infectieuses 22 (1992): 391-406.
  7. Grosset J. “Place des examens microbiologiques et anatomopathologiques dans la décision diagnostique et thérapeutique”. Médecine et Maladies Infectieuses 25 (1995): 327-33.
  8. Levidiotou SD., et al. “Detection of mycobacteria in clinical specimen using the mycobacteria growth indicator tube (MGIT) and the Lowenstein Jensen medium”. Microbiology2 (1999): lSI-IS5.
  9. Shinnick TM and Good RC. “Mycobacterial Taxonomy”. European Journal of Clinical Microbiology and Infectious Diseases 13 (1994): 884-901.
  10. Badak EZ., et al. “Comparison of Mycobacteria Growth Indicator Tube with BACTEC 460 for detection and recovery of mycobacteria from clinical specimens”. Journal of Clinical Microbiology 34 (1996): 2236-2239.
  11. Macondo EA., et al. “Amélioration du diagnostic tuberculose par le Mycobacteria Growth Indicator tube (MGIT) dans un laboratoire de pays en développement” (2000): 2145.
  12. Tortoli E., et al. “Use of Bactec Mgit For Recovery of Mycobacteria From Clinical Specimens: Multicenter Study”. Journal of Clinical Microbiology 37 (1999): 3578-3582.
  13. Augustynowicz-Kopec E., et al. “Evaluation of Bactec MGIT 960 fluorescent method in diagnosis of tuberculosis”. Pneumonology and Allergology Poland9-10 (2002): 450-457.
  14. Cruciani M., et al. “Meta-analysis of BACTEC MGIT 960 and BACTEC 460 TB, with or without solid media, for detection of mycobacteria”. Journal of Clinical Microbiology 42 (2004): 2321-2325.
  15. Lee J-J., et al. “Comparative evaluation of the BACTEC MGIT 960 system with solid medium for isolation of mycobacteria”. International Journal of Tuberculosis and Lung Disease6 (2003): 569-574.
  16. Saito H., et al. “Rapid Detection Of Afb With Mgit”. Kekkaku 11 (1996): 399-405.
  17. Rivera AB., et al. “Rapid And Improved Recovery Rate Of M. Tuberculosis In Mgit With Solid Lowenstein Jensen Medium”. Tuberculosis and Lung Disease 1 (1997): 454-459.
  18. Hanna BA., et al. “Multicenter evaluation of the BACTEC MGIT 960 system for recovery of mycobacteria”. Journal of Clinical Microbiology 37 (1999): 748-752.
  19. Yan JJ., et al. “Comparison of the MB/Bac T and BACTEC MGIT 960 system for recovery of mycobacteria from clinical specimens”. Diagnostic Microbiology and Infectious Disease 37 (2000): 25-30.
  20. Kanchana MV., et al. “Evaluation of the BACTEC MGIT 960 system for the recovery of mycobacteria”. Diagnostic Microbiology and Infectious Disease 37 (2000): 31-36.
  21. Pfyffer GE., et al. “Comparison of The MGIT With Radiometric And Solid Culture For Recovery Of AFB”. Journal of Clinical Microbiology 35 (1997): 364-368.
  22. Hobby GL., et al. “Enumeration pf tubercule bacilli in sputum of patients with pulmonary tuberculosis”. Antimicrobial Agents and Chemotherapy 4 (1973): 94-104.
  23. Kaufmann SH and Schaible UE. “100 th anniversary of Robert Koch’s Nobel Prize for the discovery of the tubercle bacillus”. Trends in Microbiology10 (2005): 469-475.
  24. Noor R., et al. “Frequency of extensively drug resistant tuberculosis (XDR-TB) among re-treatment cases in NIDCH, Dhaka, Bangladesh”. Journal of Infection and Chemotherapy2 (2012): 243-248.
  25. Rahman F., et al. “Comparison of Different Microscopic Methods With Conventional TB Culture”. Microbiology Society Journals 1 (2011): 46-50.
  26. Tortoli Enrico., et al. “Evaluation of Automated Bactec Mgit 960 System For Testing Susceptibility Of Mycobacterium Tuberculosis To Four Major Antituberculous Drugs: Comparison With The Radiometric Bactec 460tb Method And The Agar Plate Method Of Proportion”. Journal of Clinical Microbiology 40 (2001): 607-610.
  27. Gèrome Patrick., et al. “Evaluation du milieu MGIT (Mycobacteria Growth Indicator Tube) pour l’etude de la sensibilite de mycobacterium tuberculosis aux antituberculeux de premiere ligne”. (1999).
  28. Palaci M., et al. “Evaluation of Mgit For Recovery And Drug Susceptibility Testing Of M. Tuberculosis Isolates From Respiratory Specimens”. Journal of Clinical Microbiology 34 (1996): 762-764.
  29. Reisner BS., et al. “Evaluation of Mycobacteria Growth Indicator Tubes For Susceptibility Testing Of Mycobacterium Tuberculosis To Isoniazid And Rifampin”. Diagnostic Microbiology and Infectious Disease 22 (1995): 325-329.
  30. , et al. “Testing of Susceptibility of Mycobacterium tuberculosis to Isoniazid and Rifampin by Mycobacterium Growth Indicator Tube Method”. Journal of Clinical Microbiology 34 (1996): 1565-1567.
  31. Zapata Pablo., et al. “Evaluation of Mycobacteria Growth Indicator Tube (MGIT) for drug susceptibility testing of Mycobacterium tuberculosis isolates from clinical specimens”. Clinical Microbiology and Infection 5 (1999): 337-330.
  32. Birinci Asuman., et al. “Comparison of the Proportion Method with Mycobacteria Growth Indicator Tube and E-test for Susceptibility Testing of Mycobacterium tuberculosis”. Memórias do Instituto Oswaldo Cruz3 (2002): 351-352.
  33. Rusch-Gerdes S., et al. “Multicenter Evaluation Of The Mycobacteria Growth Indicator Tubes For Testing Susceptibility Of Mycobacterium Tuberculosis To First-Line Drugs”. Journal of Clinical Microbiology 37 (1999): 45-48.
  34. Nouhouyai A and Bergogne-Berrezin E. “Etude de la sensibilite des mycobacteries aux antibiotiques”. Techniques et indications, Lett Infection XI (1996): 163168.
  35. Fang-Lan Yu., et al. “Evaluation of a modified direct agar proportion method for testing susceptibility of Mycobacterium tuberculosis from MGIT samples”. Journal of Microbiology, Immunology and Infection1 (2016): 60-65.
  36. Morel P., et al. “Transfusion sanguine et risque bactérien”. Transfusion Clinique et Biologique 7 (2000): 15-23.

Ferhat Djoudi., et al. "Diagnosis and Drug Susceptibility of Mycobacterium tuberculosis from Pulmonary Specimens at Pasteur Institute of Algeria: Comparative Study between Classic Lowenstein-Jensen Culture and BACTEC MGIT 960 System". EC Pulmonology and Respiratory Medicine  8.9 (2019): 648-655.