Research Article Volume 9 Issue 2 - 2026

Ab Initio Whole Cell Kinetic Model of Corynebacterium accolens DSM 44278 (caccSM26)

Sohnnakshee Murugesu1,2, Tristan Zhi Xian Tay1,2, Magaa Lakshmi Dhinakaran1,2, Aguilar Normi Luisa Cinco1,2, Pandiyan Srinithiksha1,2 and Maurice Han Tong Ling2,3,4*

1School of Health and Life Sciences, Teesside University, UK

2Management Development Institute of Singapore, Singapore

3Newcastle Australia Institute of Higher Education, University of Newcastle, Australia

4HOHY PTE LTD, Singapore

*Corresponding Author: Maurice Han Tong Ling, Newcastle Australia Institute of Higher Education, University of Newcastle, Australia.
Received: January 09, 2026; Published: January 28, 2026



Corynebacterium accolens DSM 44278 is a nasal commensal with emerging probiotic potential and relevance to respiratory health, including interactions with respiratory pathogens in the upper airway. These properties make C. accolens a promising candidate for metabolic engineering, which can benefit from a whole-cell kinetic model to evaluate various engineering proposals in silico. However, there is currently no reported whole-cell kinetic model for C. accolens. Therefore, this study constructs a whole-cell simulatable kinetic model of C. accolens DSM 44278 using an ab initio approach by identifying enzymes from its reference genome. The resulting model, caccSM26, comprises 1097 metabolites, 407 enzymes with associated transcription and translation processes, and 1182 enzymatic reactions represented as ordinary differential equations using representative kinetic parameters. This whole-cell kinetic model serves as a foundational framework for future refinement with organism-specific data and for in silico exploration of growth behaviour, regulatory mechanisms, and metabolic engineering strategies in this clinically relevant commensal.

 Keywords: Whole-Cell Model; Kinetic Model; Differential Equations; AdvanceSyn Toolkit

  1. Tran TH., et al. “Metabolic capabilities are highly conserved among human nasal-associated Corynebacterium species in pangenomic analyses”. mSystems12 (2024): e0113224.
  2. Bomar L., et al. “Corynebacterium accolens releases antipneumococcal free fatty acids from human nostril and skin surface triacylglycerols”. mBio1 (2016): e01725-01715.
  3. Man WH., et al. “The microbiota of the respiratory tract: gatekeeper to respiratory health”. Nature Reviews Microbiology5 (2017): 259-270.
  4. Brugger SD., et al. “Commensal-pathogen interactions along the human nasal passages”. PLoS Pathogens7 (2016): e1005633.
  5. Szabo D., et al. “Specific nasopharyngeal Corynebacterium strains serve as gatekeepers against SARS-CoV-2 infection”. GeroScience5 (2023): 2927-2938.
  6. Shamsuzzaman M., et al. “Genome insight and probiotic potential of three novel species of the genus Corynebacterium”. Frontiers in Microbiology 14 (2023): 1225282.
  7. Menberu MA., et al. “In vitro and in vivo evaluation of probiotic properties of Corynebacterium accolens isolated from the human nasal cavity”. Microbiological Research 255 (2022): 126927.
  8. Duhan P., et al. “Gut microbiome engineering with probiotics: current trends and future directions”. Discover Applied Sciences11 (2025): 1354.
  9. Khanijou JK., et al. “Metabolomics and modelling approaches for systems metabolic engineering”. Metabolic Engineering Communications 15 (2022): e00209.
  10. Gudmundsson S and Nogales J. “Recent advances in model-assisted metabolic engineering”. Current Opinion in Systems Biology 28 (2021): 100392.
  11. Richelle A., et al. “Towards a widespread adoption of metabolic modeling tools in biopharmaceutical industry: a process systems biology engineering perspective”. npj Systems Biology and Applications1 (2020): 6.
  12. Lee YQ., et al. “Genome-scale metabolic model-guided systematic framework for designing customized live biotherapeutic products”. NPJ Systems Biology and Applications1 (2025): 73.
  13. Prabhu S., et al. “Derivative-free domain-informed data-driven discovery of sparse kinetic models”. Industrial and Engineering Chemistry Research5 (2025): 2601-2615.
  14. Yeo KY., et al. “Ab initio whole cell kinetic model of Yarrowia lipolytica CLIB122 (yliYKY24)”. Medicon Medical Sciences4 (2025): 01-06.
  15. Foster CJ., et al. “Building kinetic models for metabolic engineering”. Current Opinion in Biotechnology 67 (2021): 35-41.
  16. Lázaro J., et al. “Enhancing genome-scale metabolic models with kinetic data: resolving growth and citramalate production trade-offs in Escherichia coli”. Bioinformatics Advances1 (2025): vbaf166.
  17. Okuda S., et al. “KEGG Atlas mapping for global analysis of metabolic pathways”. Nucleic Acids Research 36(Web Server issue) (2008): W423-W426.
  18. Cho JL and Ling MH. “Adaptation of whole cell kinetic model template, UniKin1, to Escherichia coli whole cell kinetic model, ecoJC20”. EC Microbiology2 (2021): 254-260.
  19. Kwan ZJ., et al. “Ab initio whole cell kinetic model of Stutzerimonas balearica DSM 6083 (pbmKZJ23)”. Acta Scientific Microbiology2 (2024): 28-31.
  20. Maiyappan S., et al. “Four ab initio whole cell kinetic models of Bacillus subtilis 168 (bsuLL25) 6051-HGW (bshSM25), N33 (bsuN33SS25), FUA2231 (bsuGR25)”. Journal of Clinical Immunology and Microbiology2 (2025): 1-6.
  21. Sim BJH., et al. “Multilevel metabolic modelling using ordinary differential equations”. Encyclopedia of Bioinformatics and Computational Biology (Second Edition), eds Ranganathan S, Cannataro M, Khan AM (Elsevier, Oxford) (2025): 491-498.
  22. Müller-Hill B. “The lac Operon: A Short History of a Genetic Paradigm”. (Berlin, Germany) (1996).
  23. Churchward G., et al. “Transcription in bacteria at different DNA concentrations”. Journal of Bacteriology2 (1982): 572-581.
  24. Gray WJ and Midgley JE. “The control of ribonucleic acid synthesis in bacteria. The synthesis and stability of ribonucleic acid in rifampicin-inhibited cultures of Escherichia coli”. The Biochemical Journal2 (1971): 161-169.
  25. Kubitschek HE. “Cell volume increase in Escherichia coli after shifts to Richer media”. Journal of Bacteriology1 (1990): 94-101.
  26. Hu P., et al. “Global functional atlas of Escherichia coli encompassing previously uncharacterized proteins”. PLoS Biology4 (2009): e96.
  27. So L-H., et al. “General properties of transcriptional time series in Escherichia coli”. Nature Genetics6 (2011): 554-560.
  28. Schwanhäusser B., et al. “Corrigendum: Global quantification of mammalian gene expression control”. Nature7439 (2013): 126-127.
  29. Maurizi MR. “Proteases and protein degradation in Escherichia coli”. Experientia2 (1992): 178-201.
  30. Murthy MV., et al. “UniKin1: A universal, non-species-specific whole cell kinetic model”. Acta Scientific Microbiology10 (2020): 04-08.
  31. Bar-Even A., et al. “The moderately efficient enzyme: evolutionary and physicochemical trends shaping enzyme parameters”. Biochemistry21 (2011): 4402-4410.
  32. Ling MH. “AdvanceSyn toolkit: An open source suite for model development and analysis in biological engineering”. MOJ Proteomics & Bioinformatics4 (2020): 83-86.
  33. Yong B. “The comparison of fourth order Runge-kutta and homotopy analysis method for solving three basic epidemic models”. Journal of Physics: Conference Series 1317 (2019): 012020.
  34. Ling MH. “COPADS IV: Fixed time-step ODE solvers for a system of equations implemented as a set of python functions”. Advances in Computer Science: An International Journal3 (2016): 5-11.
  35. Saisudhanbabu T., et al. “Ab initio whole cell kinetic model of Limosilactobacillus fermentum EFEL6800 (lfeTS24)”. EC Clinical and Medical Case Reports4 (2025): 01-04.
  36. Arivazhagan M., et al. “Ab initio whole cell kinetic model of Bifidobacterium bifidum BGN4 (bbfMA24)”. Acta Scientific Nutritional Health1 (2025): 42-45.
  37. Senthilkumar A., et al. “Ab initio whole cell kinetic model of Lactobacillus acidophilus NCFM (lacAS24)”. Journal of Clinical Immunology and Microbiology1 (2025): 1-5.
  38. Wong TB., et al. “Ab initio whole cell kinetic models of Escherichia coli BL21 (ebeTBSW25) and MG1655 (ecoMAL25)”. Scholastic Medical Sciences2 (2025): 01-04.
  39. Ambel WB., et al. “UniKin2 - A universal, pan-reactome kinetic model”. International Journal of Research in Medical and Clinical Science2 (2025): 77-80.
  40. Ahn-Horst TA., et al. “An expanded whole-cell model of coli links cellular physiology with mechanisms of growth rate control”. npj Systems Biology and Applications 8.1 (2022): 30.
  41. Chagas M da S., et al. “Boolean model of the gene regulatory network of Pseudomonas aeruginosa CCBH4851”. Frontiers in Microbiology 14 (2023): 1274740.
  42. Hao T., et al. “Reconstruction of metabolic-protein interaction integrated network of Eriocheir sinensis and analysis of ecdysone synthesis”. Genes4 (2024): 410.

Maurice Han Tong Ling., et al.Ab Initio Whole Cell Kinetic Model of Corynebacterium accolens DSM 44278 (caccSM26)”. EC Clinical and Medical Case Reports  9.2 (2026): 01-06.