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Abstract
Mathematical modelling can be used to study metabolism involving thousands of biochemical reactions and kinetic models (KMs) 

of metabolism enable the time-course analysis of metabolic changes. Recently, a universal whole cell KM of central metabolism, 
UniKin1, has been presented. Here, we adapt UniKin1, into an Escherichia coli specific model by modifying the initial concentrations 
for 48.7% (n = 149) of the metabolites and 25.2% (n = 78) of the enzymes into E. coli specific concentrations, and term our model as 
ecoJC20. Our simulation results suggest that ecoJC20 is substantially different from UniKin1. We also demonstrate the potential of 
ecoJC20 to evaluate the effects of transgenic nitrogen fixation pathways on the central metabolism; thus, underpinning the potential 
applications of kinetic models as an experimental design tool.
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Introduction
Mathematical models are widely used to research natural phenomenon or design complex system scientifically [1]. One of the advan-

tages of utilizing mathematical model is that the complex information of natural phenomenon can be expressed in a concise format by 
abstraction [2]. For example, Michaelis-Menten equation allows to express enzyme reaction by using two parameters: inflexion point 
(Km) and turnover number (kcat). Likewise, mathematical models are important in biotechnology field [3] as it can be a tool to aid ex-
perimental design [4].

Among many mathematical models, KMs and GSMs are widely used in describing metabolic process [5]. GSMs contain metabolic 
stoichiometries, allowing us to predict the metabolic difference caused by genetic variation [6]; thus, observing the relationship between 
genotype and metabolism. However, metabolite concentration can also be affected by are also affected by kinetic parameters of enzymes 
[7], which are generally not captured in GSMs but is fundamental to KMs. This allow KMs to provide time-course profile of modelled me-
tabolites.
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Madhu., et al. [8] presented a universal kinetic model template, UniKin1, which can be a base model for adaptation into an organism-
specific model. In this study, we adapt UniKin1 into an E. coli specific kinetic model, ecoJC20 and demonstrate its utility in predicting the 
effects of transgenic nitrogen fixation pathways on the overall metabolism of E. coli. 

Materials and Methods
Kinetic model adaptation: The kinetic model, UniKin1 [8], which was a non-species specific model, was used as a template for adapta-
tion into an E. coli model by amending default metabolite and enzyme concentrations to E. coli specific concentrations. This is carried out 
in four steps with the overarching principle to maintain relative concentrations within metabolites and enzymes separately. Firstly, the 
relative fluxes from E. coli genome-scale model, iAF1260 [9], obtained from flux balance analysis using Cameo [10] via AdvanceSyn Toolkit 
[11] were used to vary the initial concentrations where the average flux was deemed as default concentrations. Secondly, intracellular 
metabolite concentrations from Bennett., et al. [12] of E. coli cultured in glucose were used as initial metabolite concentrations. Thirdly, 
intracellular metabolite concentrations from Park., et al. [13] were used as initial metabolite concentrations. Fourthly, the measured intra-
cellular metabolite concentrations from Tepper., et al. [14] of E. coli cultured in glucose were used as initial metabolite concentrations and 
the enzyme concentrations from Taniguchi., et al. [15] were used to transform the enzyme concentrations. Taniguchi., et al. [15] reported 
enzyme concentrations as milligrams of enzyme per gram dry weight of cell. The average was 194.7 mg enzyme per gram dry weight of 
cell, which was used to calibrate enzyme concentrations to the average of 0.1M [the default enzyme concentration in Madhu., et al. [8]]. 
Hence, the new enzyme concentration in the E. coli kinetic model can be calibrated as the enzyme concentration from Taniguchi., et al. 
[15] divided by 1947. Finally, the intracellular metabolite concentrations of E. coli from Park., et al. [16] were used as initial metabolite 
concentrations. In these steps, an amended metabolite or enzyme concentration in an earlier step can be re-amended in a later step.

Model simulation and analysis: Model simulation was performed using AdvanceSyn Toolkit [11]. The model was simulated using the 
fourth-order Runge-Kutta method [17,18] from time zero to 21600 seconds with timestep of one second, and the concentrations of me-
tabolites were bounded between 0 millimolar and 100 millimolar. The simulation results were sampled every 600 seconds. Simulation 
results were analysed using end-point analysis and mean squared error (MSE). End-point analysis examined the metabolite concentration 
differences between the same metabolites from 2 different simulation results at 21600 seconds of simulation time. MSE examined the 
mean squared differences of metabolite concentrations across the time-points between the same metabolites from 2 different simulation 
results. Hence, end-point analysis provided steady-state differences while MSE provide profile differences.

Results and Discussion
From universal kinetic model to Escherichia coli model: The universal kinetic model of core metabolism, UniKin1 [8], consist 309 me-
tabolites and 310 enzymes (Table 1). Here, we adapted UniKin1 into an E. coli specific kinetic model, ecoJC20 (“eco” is the KEGG organism 
code, “JC” is the initial of the first author, and “20” is the year when this work started), by changing default metabolite and enzyme con-
centrations to E. coli specific concentrations. 149 out of 306 (48.7%) metabolite and 78 out of 310 (25.2%) enzyme concentrations were 
changed into E. coli specific concentrations. Several studies examining intracellular metabolite concentrations show different intracellular 
metabolite concentrations between species [16,19,20] while conserved in central metabolic steps [21-24]; thereby, suggesting that the 
differences in central metabolism between different species can be elucidated by differences in intracellular metabolite and enzyme con-
centrations and enzyme kinetics. This further supports the theoretical basis that a template kinetic model of core metabolism can be used 
for developing species-specific whole cell kinetic models [8].
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By simulating UniKin1 [8] and ecoJC20 and comparing the simulation end-points (21600 seconds); our results show that 44 me-
tabolites decreased in concentration while 28 metabolites increased in concentration (Figure 1); thus, 72 out of 306 (23.5%) of the me-
tabolites changed in end-point concentrations. Moreover, 184 (60.1%) metabolites show non-zero MSE across simulation time between 
UniKin1 and ecoJC20, suggesting that ecoJC20 is substantially different from UniKin1.

Stages of Adaptation Number of [Metabolite] Number of [Enzyme]
Stage 0: UniKin1 306 (100%) 310 (100%)
Stage 1: iAF1260 5 (1.6%) 62 (20.0%)

Unchanged after Stage 1 301 (98.3%) 248 (80.0%)
Stage 2: Bennett., et al. [12] 54 (17.6%) 0 (0.0%)

Unchanged after Stage 2 251 (82.0%) 248 (80.0%)
Stage 3: Park., et al. [13] 4 (1.3%) 0 (0.0%)
Unchanged after Stage 3 249 (81.4%) 248 (80.0%)

Stage 4: Tepper., et al. [14] and Taniguchi., et al. [15] 134 (43.8%) 29 (9.4%)
Unchanged after Stage 4 159 (52.0%) 232 (74.8%)
Stage 5: Park., et al. [16] 65 (21.2%) 0 (0.0%)
Unchanged after Stage 5 157 (51.3%) 232 (74.8%)

Total Adapted 149 (48.7%) 78 (25.2%)
Total Un-Adapted 157 (51.3%) 232 (74.8%)

Table 1: Summary of stepwise model adaptation.

Figure 1: 72 metabolites changed in concentration at simulation end-points (21600 Seconds) between UniKin1 (8) and ecoJC20.
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Use case: Perturbation from nitrogen fixations: We examine the effects of two nitrogen fixation pathways (Figure 2) on E. coli central 
metabolism using ecoJC20. In the first pathway (N1), nitrogen (KEGG C00697) is fixed into ammonia (KEGG C00014) using 2 enzymes [ni-
trogenase molybdenum-iron protein alpha chain (EC 1.18.6.1) and vanadium-dependent nitrogenase alpha chain (EC 1.18.6.2)]. Hence, ni-
trogen, nitrogenase molybdenum-iron protein alpha chain (EC 1.18.6.1), and vanadium-dependent nitrogenase alpha chain (EC 1.18.6.2) 
are added into ecoJC1, forming ecoJC20_N1 as ammonia is native to ecoJC20. In the second pathway (N2), 4 metabolites [nitrogen (KEGG 
C00697), dihydro-orotate (KEGG C00337), orotate (KEGG C00295), and orotidine 5’-phosphate (KEGG C01103)] and 6 enzymes [nitro-
genase molybdenum-iron protein alpha chain (EC 1.18.6.1), vanadium-dependent nitrogenase alpha chain (EC 1.18.6.2), dihydroorotate 
dehydrogenase (NAD+) catalytic subunit (EC 1.3.1.14), dihydroorotate dehydrogenase (fumarate) (EC 1.3.98.1), dihydroorotate dehy-
drogenase (EC 1.3.5.2), and orotidylic phosphorylase (EC 2.4.2.10)] were added to ecoJC20 forming ecoJC20_N2. The concentrations of 
added metabolites and enzymes are 1 uM and 100 mM respectively. The turnover numbers (kcat) and Michaelis-Menten constants (Km) 
of added enzymes are set to 10 per second and 0.001M respectively.

Figure 2: Modifications to ecoJC20 to ecoJC20_N1 and ecoJC20_N2. The shaded metabolites represent metabolites native to ecoJC20 while 
the unshaded metabolites represent metabolites added into ecoJC20.

Our simulation results (Figure 3 and 4) show that of the 10 metabolites decreased in concentration in N1, only 5 (C00322, C00624, 
C00956, C00979, and C04002) are common in the decreased metabolite list of N2. In terms of common metabolites with increased con-
centration, only 2 (C00151, and C05662) are common. This suggests the two nitrogen fixation pathways have different impact on the 
central metabolism of E. coli when compared to results from wild-type model, ecoJC20; thereby, underpinning the potential applications 
of kinetic models as an experimental design tool [25-27] for multiple applications [28]. 
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Figure 3: 24 metabolites changed in concentration at simulation end-points (21600 seconds) between ecoJC20 and ecoJC20_N1.  
10 metabolites decreased in concentration (red) while 14 metabolites increased in concentration (green).

Figure 4: 29 metabolites changed in concentration at simulation end-points (21600 seconds) between ecoJC20 and ecoJC20_N2.  
14 metabolites decreased in concentration (red) while 15 metabolites increased in concentration (green).
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Conclusion
In this study, we adapt a previously published universal (non-species specific) whole cell kinetic model, UniKin1, into an E. coli specific 

whole cell kinetic model, ecoJC20. Our simulation results suggest that ecoJC20 is substantially different from UniKin1.

Supplementary Materials
Data files for this study can be downloaded from http://bit.ly/ecoJC20.
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