EC Clinical and Medical Case Reports

Review Article Volume 6 Issue 3 - 2023

Photoimmunotherapy for Immunosuppressed Patients and Prevalent and Commonly Known Cancers

Hilary M Holets1,2, Nicholas A Kerna3,4*, Dabeluchi C Ngwu5,6, Sudeep Chawla7, ND Victor Carsrud8, Kevin D Pruitt9,10, John V Flores1,2, Joseph Anderson II11 and Dorathy Nwachukwu12

1Beverly Hills Wellness Surgical Institute, USA

2Orange Partners Surgicenter, USA

3First InterHealth Group, Thailand

4Independent Global Medical Research Consortium, Thailand

5Cardiovascular and Thoracic Surgery Unit, Department of Surgery, Federal Medical Center, Umuahia, Nigeria

6Earthwide Surgical Missions, Nigeria

7Chawla Health & Research, USA

8Lakeline Wellness Center, USA

9Kemet Medical Consultants, USA

10PBJ Medical Associates, LLC, USA

11International Institute of Original Medicine, USA

12Georgetown American University, Guayana

*Corresponding Author: Nicholas A Kerna, (mailing address) POB47 Phatphong, Suriwongse Road, Bangkok, Thailand 10500. Contact: medpublab+drkerna@gmail.com.
Received: December 17, 2022; Published: February 28, 2023



Tumors have become more common in recent years across the world. Although immunotherapy is a precise, quick, and efficient way to treat tumors, it generates serious side effects, such as cytokine release syndrome (CRS) and neurotoxicity. Thus, the creation of an efficient and non-harmful immunotherapy approach is urgently required. Photochemical interactions—especially photodynamic therapy (PDT) and photothermal therapy (PTT)—can be used for direct cell killing in treating malignancies.

Selective PTT, which involves the administration of a light-absorbing dye in situ, has also been shown to be an effective strategy for the local treatment of malignancies. Photoimmunotherapy (PIT) can become a systemic treatment method by enhancing the benefits of phototherapy when combined with immunotherapy. PIT combines the benefits of standard light treatment with the precision targeting capacity of antibodies.

A unique luminous dye and a substance that targets cancer are combined in PIT to increase the body's immunological response. Preclinical investigations have employed PIT combinations, especially in conjunction with immunoadjuvants. The regulatory bodies in Japan have granted Near-Infrared PIT (NIR-PIT) its approval, enabling the exploration of ways to minimize risks and maximize rewards from this therapeutic approach.

An essential advantage of NIR-PIT is its ability to kill cancer cells without harming healthy cells or altering the host's immune system. Numerous malignancies can benefit from using NIR-PIT as a standalone treatment or in conjunction with other immunological therapies to improve immunity. This review summarizes the history, current, and future of PIT research and its application to various and diverse human conditions.

Keywords: Cytokines; Immunoadjuvants; Immunogenic Cell Death; Non-Pharmacological Cancer Treatment; Precision Targeting

  1. Brodsky M., et al. “Revisiting the history and importance of phototherapy in dermatology”. The Journal of the American Medical Association Dermatology 5 (2017): 435. https://jamanetwork.com/journals/jamadermatology/fullarticle/2625014
  2. Grzybowski A., et al. “A brief report on the history of phototherapy”. Clinics in Dermatology 5 (2016): 532-537. https://pubmed.ncbi.nlm.nih.gov/27638430/
  3. Matos TR and Sheth V. “The symbiosis of phototherapy and photoimmunology”. Clinics in Dermatology 5 (2016): 538-547. https://pubmed.ncbi.nlm.nih.gov/27638431/
  4. Morison WL. “Photoimmunology”. Journal of Investigative Dermatology 1 (1981): 71-76. https://pubmed.ncbi.nlm.nih.gov/7252260/
  5. Wang C., et al. “Immunological responses triggered by photothermal therapy with carbon nanotubes in combination with anti-CTLA-4 therapy to inhibit cancer metastasis”. Advanced Materials 48 (2014): 8154-8162. https://pubmed.ncbi.nlm.nih.gov/25331930/
  6. Peng Z., et al. “Photoimmunotherapy: A new paradigm in solid tumor immunotherapy”. Cancer Control 29 (2022): 107327482210888. https://www.researchgate.net/publication/359922886_Photoimmunotherapy_A_New_Paradigm_in_Solid_Tumor_Immunotherapy
  7. Zhang H. “Recent Trends in Photoimmunotherapy”. Immunotherapy S1 (2022): e001. https://www.longdom.org/open-access/recent-trends-in-photoimmunotherapy-78330.html
  8. Mew D., et al. “Photoimmunotherapy: treatment of animal tumors with tumour-specific monoclonal antibody-hematoporphyrin conjugates”. Journal of Immunology 3 (1983): 1473-1477. https://www.semanticscholar.org/paper/Photoimmunotherapy%3A-treatment-of-animal-tumors-with-Mew-Wat/4e01b319f050b26a49315daf5e52b80867418f65
  9. Kobayashi H., et al. “Near-infrared photoimmunotherapy of cancer: a new approach that kills cancer cells and enhances anti-cancer host immunity”. International Immunology 1 (2021): 7-15. https://pubmed.ncbi.nlm.nih.gov/32496557/
  10. Mitsunaga M., et al. “Cancer cell-selective in vivo near infrared photoimmunotherapy targeting specific membrane molecules”. Nature Medicine 12 (2011): 1685-1691. https://www.nature.com/articles/nm.2554
  11. Liu J., et al. “Tumor-microenvironment-activatable polymer nano-immunomodulator for precision cancer photoimmunotherapy”. Advanced Materials 8 (2022): e2106654. https://pubmed.ncbi.nlm.nih.gov/34854147/
  12. Li Y., et al. “Nanotechnology-based photoimmunological therapies for cancer”. Cancer Letters 442 (2019): 429-438. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6613935/
  13. Turrentine JE and Cruz PD Jr. “Photoimmunology”. In: Clinical and Basic Immunodermatology. Springer International Publishing (2017): 151-163. https://link.springer.com/chapter/10.1007/978-3-319-29785-9_10
  14. Krutmann J. “Therapeutic photoimmunology: photoimmunological mechanisms in photo(chemo)therapy”. Journal of Photochemistry and Photobiology B: Biology 2 (1998): 159-164. https://pubmed.ncbi.nlm.nih.gov/9757598/
  15. Matsuoka K., et al. “Hurdles for the wide implementation of photoimmunotherapy”. Immunotherapy17 (2021): 1427-1438. https://www.futuremedicine.com/doi/pdf/10.2217/imt-2021-0241
  16. Zhu Q., et al. “Near infrared (NIR) light therapy of eye diseases: A review”. International Journal of Medical Sciences 1 (2021): 109-119. https://pubmed.ncbi.nlm.nih.gov/33390779/
  17. Morison WL. “Photoimmunology”. Archives of Dermatological 3 (1979): 350. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4251714/
  18. Schwarz T and Beissert S. “Milestones in photoimmunology”. Journal of Investigative Dermatology 1 (2013): E7-E10. https://pubmed.ncbi.nlm.nih.gov/23820723/
  19. Ullrich SE and Byrne SN. “The immunologic revolution: photoimmunology”. Journal of Investigative Dermatology 3-2 (2012): 896-905. https://pubmed.ncbi.nlm.nih.gov/22170491/
  20. Granstein RD. “Photoimmunology”. In Seminars in Dermatology 1 (1990): 16-24. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4251714/
  21. Bernard JJ., et al. “Photoimmunology: how ultraviolet radiation affects the immune system”. Nature Reviews Immunology 11 (2019): 688-701. https://www.nature.com/articles/s41577-019-0185-9
  22. Donawho CK and Kripke ML. “Photoimmunology of experimental melanoma”. Cancer and Metastasis Reviews 2 (1991): 177-188. https://pubmed.ncbi.nlm.nih.gov/1873856/
  23. Kripke ML. “Reflections on the field of photoimmunology”. Journal of Investigative Dermatology 1 (2013): 27-30. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3600945/
  24. Xiaoxue X., et al. “Near infrared light triggered photo/immuno-therapy toward cancers”. Frontiers in Bioengineering and Biotechnology 8 (2020): 488. https://www.frontiersin.org/articles/10.3389/fbioe.2020.00488/full
  25. Aryani IA., et al. “Phototherapy in Dermatology”. Arkus 1 (2021): 182-185. https://hmpublisher.com/index.php/arkus/article/view/119
  26. Wakiyama H., et al. “Near infrared photoimmunotherapy of cancer; possible clinical applications”. Nanophotonics12 (2021): 3135-3151. https://www.degruyter.com/document/doi/10.1515/nanoph-2021-0119/html?lang=en
  27. Kobayashi H. “Expanding the application of cancer near-infrared photoimmunotherapy”. EBio Medicine103416 (2021): 103416. https://pubmed.ncbi.nlm.nih.gov/34134087/
  28. Kochuparambil ST., et al. “A phase 1, multicenter, open-label, dose-escalation, combination study of RM-1929 and photoimmunotherapy in patients with recurrent head and neck cancer”. Annals of Oncology 5 (2017): v376. https://clinicaltrials.gov/ct2/show/NCT02422979
  29. Kato T., et al. “Near infrared photoimmunotherapy; A review of targets for cancer therapy”. Cancers 11 (2021): 2535. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8196790/
  30. Meric-Bernstam F., et al. “Advances in HER2-targeted therapy: Novel agents and opportunities beyond breast and gastric cancer”. Clinical Cancer Research 7 (2019): 2033-2041. https://pubmed.ncbi.nlm.nih.gov/30442682/
  31. Ito K., et al. “Combination photoimmunotherapy with monoclonal antibodies recognizing different epitopes of human epidermal growth factor receptor 2: an assessment of phototherapeutic effect based on fluorescence molecular imaging”. Oncotarget12 (2016): 14143-14152. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4924703/
  32. Nagaya T., et al. “Host immunity following near-infrared photoimmunotherapy is enhanced with PD-1 checkpoint blockade to eradicate established antigenic tumors”. Cancer Immunology Research 3 (2019): 401-413. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8237708/
  33. Nagaya T., et al. “Near-infrared photoimmunotherapy targeting prostate cancer with prostate-specific membrane antigen (PSMA) antibody”. Molecular Cancer Research 9 (2017): 1153-1162. https://pubmed.ncbi.nlm.nih.gov/28588059/
  34. Hiroshima Y., et al. “Photoimmunotherapy inhibits tumor recurrence after surgical resection on a pancreatic cancer patient-derived orthotopic xenograft (PDOX) nude mouse model”. Annals of Surgical Oncology 3-S3 (2015): S1469-1474. https://pubmed.ncbi.nlm.nih.gov/25893411/
  35. Nagaya T., et al. “Near infrared photoimmunotherapy with an anti-mesothelin antibody”. Oncotarget17 (2016). https://pubmed.ncbi.nlm.nih.gov/26981775/
  36. Wei D., et al. “Selective photokilling of colorectal tumors by near-infrared photoimmunotherapy with a GPA33-targeted single-chain antibody variable fragment conjugate”. Molecular Pharmaceutics 7 (2020): 2508-2517. https://pubs.acs.org/doi/10.1021/acs.molpharmaceut.0c00210
  37. Nishimura T., et al. “Photoimmunotherapy targeting biliary-pancreatic cancer with humanized anti-TROP2 antibody”. Cancer Medicine 18 (2019): 7781-7792. https://pubmed.ncbi.nlm.nih.gov/31674732/
  38. Panarelli NC., et al. “Tissue-specific cadherin CDH17 is a useful marker of gastrointestinal adenocarcinomas with higher sensitivity than CDX2”. American Journal of Clinical Pathology 2 (2012): 211-222. https://academic.oup.com/ajcp/article/138/2/211/1760606
  39. Hanaoka H., et al. “Glypican-3 targeted human heavy chain antibody as a drug carrier for hepatocellular carcinoma therapy”. Molecular Pharmaceutics 6 (2015): 2151-2157. https://pubmed.ncbi.nlm.nih.gov/25955255/
  40. Fujimoto S., et al. “A novel theranostic combination of near-infrared fluorescence imaging and laser irradiation targeting c-KIT for gastrointestinal stromal tumors”. Theranostics 9 (2018): 2313-2328. https://pubmed.ncbi.nlm.nih.gov/29721082/
  41. Heryanto YD., et al. “Applying near-infrared photoimmunotherapy to B-cell lymphoma: comparative evaluation with radioimmunotherapy in tumor xenografts”. Annals of Nuclear Medicine 9 (2017): 669-677. https://pubmed.ncbi.nlm.nih.gov/28741052/
  42. Berkowitz JL., et al. “Safety, efficacy, and pharmacokinetics/pharmacodynamics of daclizumab (anti-CD25) in patients with adult T-cell leukemia/lymphoma”. Journal of Clinical Immunology 2 (2014): 176-187. https://pubmed.ncbi.nlm.nih.gov/25267440/
  43. Kiss B., et al. “CD47-targeted near-infrared photoimmunotherapy for human bladder cancer”. Clinical Cancer Research 12 (2019): 3561-3571. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7039531/
  44. Wei W., et al. “CD146-targeted multimodal image-guided photoimmunotherapy of melanoma”. Advanced Science 9 (2019): 1801237. https://pubmed.ncbi.nlm.nih.gov/31065511/
  45. Harada T., et al. “Near-infrared photoimmunotherapy with galactosyl serum albumin in a model of diffuse peritoneal disseminated ovarian cancer”. Oncotarget 48 (2016): 79408-79416. https://pubmed.ncbi.nlm.nih.gov/27765903/
  46. Nagaya T., et al. “Near infrared photoimmunotherapy with avelumab, an anti-programmed death-ligand 1 (PD-L1) antibody”. Oncotarget5 (2017): 8807-8817. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5341755/
  47. Abu-Yousif AO., et al. “Epidermal growth factor receptor-targeted photosensitizer selectively inhibits EGFR signaling and induces targeted phototoxicity in ovarian cancer cells”. Cancer Letters 2 (2012): 120-127. https://pubmed.ncbi.nlm.nih.gov/22266098/
  48. Nishimura T., et al. “Cancer neovasculature-targeted near-infrared photoimmunotherapy (NIR-PIT) for gastric cancer: different mechanisms of phototoxicity compared to cell membrane-targeted NIR-PIT”. Gastric Cancer 1 (2020): 82-94. https://pubmed.ncbi.nlm.nih.gov/31302791/
  49. Katsube R., et al. “Fibroblast activation protein targeted near-infrared photoimmunotherapy (NIR PIT) overcomes therapeutic resistance in human esophageal cancer”. Scientific Reports 1 (2021): 1693. https://www.nature.com/articles/s41598-021-81465-4
  50. Roberts EW., et al. “Depletion of stromal cells expressing fibroblast activation protein-α from skeletal muscle and bone marrow results in cachexia and anemia”. Journal of Experimental Medicine 6 (2013): 1137-1151. https://pubmed.ncbi.nlm.nih.gov/23712428/
  51. Maruoka Y., et al. “Near infrared photoimmunotherapy for cancers: A translational perspective”. EBio Medicine 103501 (2021): 103501. https://pubmed.ncbi.nlm.nih.gov/34332294/
  52. Franzin R., et al. “The use of immune checkpoint inhibitors in oncology and the occurrence of AKI: Where do we stand?” Frontiers in Immunology 11 (2020): 574271. https://academic.oup.com/ckj/advance-article/doi/10.1093/ckj/sfac194/6679567
  53. Dine J., et al. “Immune checkpoint inhibitors: An innovation in immunotherapy for the treatment and management of patients with cancer”. Asia-Pacific Journal of Oncology Nursing 2 (2017): 127-135. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5412150/
  54. Immunotherapy for Cancer”. National Cancer Institute (2022).
  55. Sapkota B., et al. “Biologic Response Modifiers (BRMs)”. In: Stat Pearls. Stat Pearls Publishing (2022). https://pubmed.ncbi.nlm.nih.gov/31194357/
  56. CAR T-cell Therapy and Its Side Effects (2022). https://www.cancer.org/treatment/treatments-and-side-effects/treatment-types/immunotherapy/car-t-cell1.html
  57. T-cell Transfer Therapy - Immunotherapy. National Cancer Institute (2022). https://www.cancer.gov/about-cancer/treatment/types/immunotherapy/t-cell-transfer-therapy
  58. Kumar M., et al. “Monoclonal antibody-based immunotherapy and its role in the development of cardiac toxicity”. Cancers1 (2020): 86. https://pubmed.ncbi.nlm.nih.gov/33396766/
  59. Zia Sherrell MPH. “Alternatives to chemotherapy: 5 options”. MedicalNewsToday.com (2022). https://www.medicalnewstoday.com/articles/alternatives-to-chemotherapy
  60. Kobayashi H and Choyke PL. “Near-infrared photoimmunotherapy of cancer”. Accounts of Chemical Research 8 (2019): 2332-2339. https://pubs.acs.org/doi/10.1021/acs.accounts.9b00273
  61. Lundqvist EÅ., et al. “Principles of chemotherapy”. International Journal of Gynecology and Obstetrics 131 2.24-1 (2015): S146-149. https://obgyn.onlinelibrary.wiley.com/doi/full/10.1016/j.ijgo.2015.06.011
  62. Alam A. “Chemotherapy treatment and strategy schemes: A review”. Open Access Journal of Toxicology 5 (2018). https://juniperpublishers.com/oajt/pdf/OAJT.MS.ID.555600.pdf
  63. Wei D., et al. “Near-infrared photoimmunotherapy: design and potential applications for cancer treatment and beyond”. Theranostics16 (2022): 7108-7131. https://pubmed.ncbi.nlm.nih.gov/36276636/
  64. Bispo M., et al. “Fighting Staphylococcus aureus infections with light and photoimmunoconjugates”. JCI Insight 22 (2020). https://pubmed.ncbi.nlm.nih.gov/33048846/
  65. Nocchi L., et al. “Interleukin-31-mediated photoablation of pruritogenic epidermal neurons reduces itch-associated behaviours in mice”. Nature Biomedical Engineering 2 (2019): 114-125. https://pubmed.ncbi.nlm.nih.gov/30944432/
  66. Boss M., et al. “Receptor-targeted photodynamic therapy of glucagon-like peptide 1 receptor-positive lesions”. The Journal of Nuclear Medicine 11 (2020): 1588-1593. https://pubmed.ncbi.nlm.nih.gov/32385165/
  67. Laverman P., et al. “Immuno-PET and immuno-SPECT of rheumatoid arthritis with radiolabeled anti-fibroblast activation protein antibody correlates with severity of arthritis”. The Journal of Nuclear Medicine 5 (2015): 778-783. https://pubmed.ncbi.nlm.nih.gov/25858044/
  68. Dorst DN., et al. “Targeting of fibroblast activation protein in rheumatoid arthritis patients: imaging and ex vivo photodynamic therapy”. Rheumatology 7 (2022): 2999-3009. https://pubmed.ncbi.nlm.nih.gov/34450633/
  69. Dorst DN., et al. “Fibroblast activation protein targeted photodynamic therapy selectively kills activated skin fibroblasts from systemic sclerosis patients and prevents tissue contraction”. International Journal of Molecular Sciences 23 (2021): 12681. https://pubmed.ncbi.nlm.nih.gov/34884484/
  70. Sato K., et al. “Selective cell elimination in vitro and in vivo from tissues and tumors using antibodies conjugated with a near infrared phthalocyanine”. RSC Advances 32 (2015): 25105-25114. http://xlink.rsc.org/?DOI=c4ra13835j
  71. Sato K., et al. “Selective cell elimination from mixed 3D culture using a near infrared photoimmunotherapy technique”. Journal of Visualized Experiments 109 (2016). https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4828982/
  72. Teixeira AI and Leal Filipe P. “Protocolos de Fototerapia no Tratamento da Psoríase”. The Journal of the Portuguese Society of Dermatology and Venereology 4 (2016): 355-362. https://revista.spdv.com.pt/index.php/spdv/article/view/674
  73. Franken SM., et al. “Improving access to home phototherapy for patients with psoriasis: current challenges and future prospects”. Psoriasis 6 (2016): 55-64. https://pubmed.ncbi.nlm.nih.gov/29387594/
  74. Tech Sci Research, Photoimmunotherapy Market Size, Growth, Trends, Forecast 2027 (2022). https://www.techsciresearch.com/report/photoimmunotherapy-market/12819.html
  75. Rakuten Medical Announces New Name “Alluminox TM” for its Proprietary Technology Platform. Rakuten Medical - To conquer cancer (2022). https://rakuten-med.com/us/news/press-releases/2022/03/07/7572/
  76. Cognetti DM., et al. “Phase 1/2a, open-label, multicenter study of RM-1929 photoimmunotherapy in patients with locoregional, recurrent head and neck squamous cell carcinoma”. Head Neck 12 (2021): 3875-3887. https://pubmed.ncbi.nlm.nih.gov/34626024/
  77. Tahara M., et al. “A phase I, single-center, open-label study of RM-1929 photoimmunotherapy in Japanese patients with recurrent head and neck squamous cell carcinoma”. The International Journal of Clinical Oncology 10 (2021): 1812-1821. https://pubmed.ncbi.nlm.nih.gov/34165660/
  78. Nagaya T., et al. “Endoscopic near infrared photoimmunotherapy using a fiber optic diffuser for peritoneal dissemination of gastric cancer”. Cancer Science 6 (2018): 1902-1908. https://pubmed.ncbi.nlm.nih.gov/29676827/
  79. Nagaya T., et al. “Near infrared photoimmunotherapy using a fiber optic diffuser for treating peritoneal gastric cancer dissemination”. Gastric Cancer 3 (2019): 463-472. https://pubmed.ncbi.nlm.nih.gov/30171392/
  80. Sato K., et al. “Spatially selective depletion of tumor-associated regulatory T cells with near-infrared photoimmunotherapy”. Science Translational Medicine 352 (2016): 352ra110-352ra110. https://pubmed.ncbi.nlm.nih.gov/27535621/
  81. Beissert S., et al. “In Cutaneous Lupus Erythematosus 2005”. In Cutaneous Lupus Erythematosus (2005): 19-32. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3953616/
  82. Elmets CA., et al. “Photoimmunology”. Clinics in Dermatology 3 (2014): 277-290. https://pubmed.ncbi.nlm.nih.gov/24891051/
  83. Sundaram P and Abrahamse H. “Phototherapy combined with carbon nanomaterials (1D and 2D) and their applications in cancer therapy”. Materials 21 (2020): 4830. https://pubmed.ncbi.nlm.nih.gov/33126750/
  84. Hamblin MR. “Mechanisms and applications of the anti-inflammatory effects of photobiomodulation”. AIMS Biophysics 3 (2017): 337-361. https://pubmed.ncbi.nlm.nih.gov/28748217/
  85. Hamblin MR., et al. “Photobiomodulation and cancer: What is the truth?” Photobiomodulation, Photomedicine, and Laser Surgery 5 (2018): 241-245. https://pubmed.ncbi.nlm.nih.gov/29466089/
  86. Hu T., et al. “Recent advances in innovative strategies for enhanced cancer photodynamic therapy”. Theranostics7 (2021): 3278-3300. https://www.thno.org/v11p3278.htm
  87. Bulat V., et al. “The mechanisms of action of phototherapy in the treatment of the most common dermatoses”. Collegium Antropologicum 2 (2011): 147-151. https://pubmed.ncbi.nlm.nih.gov/22220423/
  88. Dupont E and Craciun L. “UV-induced immunosuppressive and anti-inflammatory actions: mechanisms and clinical applications”. Immunotherapy2 (2009): 205-210. https://pubmed.ncbi.nlm.nih.gov/20635942/
  89. Xiaoxue X., et al. “Near infrared light triggered photo/immuno-therapy toward cancers”. Frontiers in Bioengineering and Biotechnology 8 (2020): 488. https://www.frontiersin.org/articles/10.3389/fbioe.2020.00488/full
  90. Photodynamic therapy to treat cancer. National Cancer Institute (2022). https://www.cancer.gov/about-cancer/treatment/types/photodynamic-therapy
  91. Mussini A., et al. “Targeted photoimmunotherapy for cancer”. BioMolecular Concepts 1 (2022): 126-147. https://www.cancer.gov/news-events/cancer-currents-blog/2016/photoimmunotherapy-cancer
  92. Daynes RA., et al. “Photoimmunology-Past, Present and Future”. The Journal of the Korean Society for Microbiology 3 (1986): 311-329.
  93. Hollandsworth HM., et al. “Near-infrared photoimmunotherapy is effective treatment for colorectal cancer in orthotopic nude-mouse models”. PLoS One 6 (2020): e0234643. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7302706/
  94. Monaco H., et al. “Quickly evolving nearā€infrared photoimmunotherapy provides multifaceted approach to modern cancer treatment”. VIEW3 (2022): 20200110. https://onlinelibrary.wiley.com/doi/abs/10.1002/VIW.20200110

Holets HM, Kerna NA, Ngwu DC, Chawla S, Carsrud NDV, Pruitt KD, Flores JV, Anderson II J, Nwachukwu D. Photoimmunotherapy for Immunosuppressed Patients and Prevalent and Commonly Known Cancers. EC Clinical and Medical Case Reports   6.3 (2023): 25-42.