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Abstract
Alzheimer’s disease (AD) characterized by insoluble amyloid-β (Aβ) deposits, neurofibrillary tangles (NFTs), and neuronal de-

mise. The influence of environmental and genetic factors on AD progression remains elusive, however evidence suggests biometal 
dyshomeostasis elicits neuronal death, neuroinflammation, and accumulated oxidative damages in AD brain. As such, three pathways 
have been identified that result from abnormal biometal accumulation and increased levels of reactive oxygen species (ROS) and 
reactive nitrogen species (RNS) in AD brain parenchyma: (1) the damage caused by direct oxidation of cellular components such as 
DNA and proteins; (2) the oligomerization of Aβ and NFTs, and (3) the promotion of apoptosis through NF-κB signaling pathway. 
Finally, given recent developments in nanotechnology, we have briefly reviewed potential nanotheranostic agents as potential AD 
theranostics. 

Keywords: Alzheimer’s Disease; Redox Stress; Aβ Amyloid; Tau Protein; Biometals; Metal Chelators; Nanotheranostics; Blood-Brain 
Barrier

Introduction

Alzheimer’s disease (AD) is the most common form of senile dementia, affecting at an estimated of 5.8 million Americans, as trends 
are projected to reach 13.8 million due to the baby boomers [1]. Clinical significance includes irreversible memory impairments and 
can lead to decline of motor and sensory functions [2]. Abnormal accumulation of insoluble misfolded and post-translationally modified 
proteinaceous deposits, amyloid-β plaques and neurofibrillary tangles (NFTs), are most common features of AD [2]. In brief, Aβ are the 
principal components of senile plaques and NFTs are composed of hyperphosphorylated tau proteins. The majority of cases are classified 
as sporadic. However, between 5% and 10% of cases are familial and have an autosomal dominant inheritance pattern with variable 
penetrance; suggesting the determinants of disease are polygenic and multifactorial [3].

Aβ is generated by post-translational synergistic cleavage of amyloid precursor protein (APP) via β- and γ-secretases. Normally, APP 
catabolism generates Aβ isoforms with carboxyl-terminal heterogeneity of between 39 and 43 residues [4]. The Aβ1-40 form (40 amino 
acid residues) is the major soluble Aβ species generated in brain and is typically found at low nanomolar concentrations in cerebrospinal 
fluid (CSF) [5]. The Aβ1-42 form (42 residues) is generated at levels 10-fold lower than Aβ1-40. It is also more fibrillogenic and heavily 
enriched in the interstitial amyloid plaques. Interestingly, the ratio of soluble Aβ1-42 to Aβ1-40 is increased in familial AD. This observation 
and the greater propensity of Aβ1-42 to form neurotoxic oligomers has led to this isoform being considered as the key pathogenic Aβ 
species in AD [6]. 
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Previous research determined insoluble Aβ deposits mediates neurodegeneration, known as the amyloid hypothesis. However, 
emergence of recent data hypothesized amyloid alone may not fully account for pathogenesis. Furthermore, plaque load shows weak 
correlation with cognitive status [7]. Experimental evidence suggests highly neurotoxic soluble oligomeric intermediates are the key 
pathogenic Aβ species in AD but insoluble amyloid-β deposits [8,9]. 

Experimental data suggest that biometals may play a key role in Aβ pathology and AD pathogenesis, and mechanisms for initiation and 
propagating Aβ pathology appear to be polygenic and multifactorial. For example, pathological proteins are inducted by direct interaction 
with Aβ or tau. It also influences the generation of ROS favoring environmental conditions that induce AD pathology [10]. Notably, 
oxidative brain conditions exacerbate Aβ levels causing a negative feed-forward loop [11]. 

Furthermore, increased metal and ROS levels may also activate the nuclear factor kappa B (NF-κB) signaling pathway. The NF-κB 
pathway induces neuronal apoptosis and plays a role in AD neurodegeneration [9,10,12,13]. Herein, this review will focus on the roles of 
biometal-mediated oxidation in AD pathology and review a model in which activation of the NF-κB signaling pathway ultimately leads to 
Aβ deposition. In addition, potential novel strategies to treat AD using nanotheranostics will be discussed.

Metal-mediated redox stress in Alzheimer’s disease

Evidence suggests environmental metal exposure or a homeostatic imbalance (such as copper ions) are major risk factor for AD. In fact, 
expression of APP is modulated by copper ions [10]. Furthermore, primary cortical neurons and embryonic fibroblasts from APP null mice 
exhibited significantly elevated levels of copper compared to wild type mice [14,15]. Collectively, these data suggest the cross-regulatory 
action between APP and biometal imbalance carries profound consequences for AD pathophysiology [16].

One likely consequence of dyshomeostasis of cerebral biometals is increase redox potential of the brain parenchyma. Consistent with 
this model, AD brain show evidence of extensive, wide spread and long-term ROS-mediated oxidative damage and specific binding of 
redox-active biometals are likely to elevate non-specific oxidation of Aβ, tau, and APP [17]. Moreover, Aβ is a metallopeptide with a high 
affinity for copper [18] and zinc [19, 20]. Copper binding in particular has been shown to promote Aβ oligomerization and redox activities 
linked to AD pathology [21]. Thus, biometal dyshomeostasis may contribute to the generation of pathology via at two mechanisms by 
increasing interaction of these metalloproteins with oxidizing metals and through promotion of an oxidative environment in AD brain 
parenchyma. 

Analysis of micro particle-induced x-ray emission (µ-PIXE) observed abnormal enrichment of Cu, Fe, and Zn when Aβ amyloid plaques 
were present a post-mortem AD brain [22]. A micro X-ray fluorescence (µ-XRF) in combination with laser capture microdissection 
(LCM) µ-XRF provides higher sample penetration depth (1000 µm) and spatial resolution (0.1 µm) compared to µ-PIXE (100 µm and 
0.3 µm, respectively) [23]. In combination these techniques allow high resolution analysis while minimizing possible background signal 
from neuropils and other cellular components. Our data confirmed previous results stating amyloid plaques are enriched for Cu, Fe, 
and Zn. In addition, analysis revealed similar biometal profiles in submicron size amyloid plaques associated with early stages of AD 
amyloidosis [24]. Plaque sulfur levels were also found to be abnormally high. High sulfur signals suggest an abundance of di-sulfur bonds 
and S-glutathionylation, markers of oxidative conditions [25]. These data are consistent with an important role for oxidative stress and 
damage in plaque formation [26]. 

Metals promote Aβ aggregation and redox activity 

Former results attested Aβ aggregation mediated by Zn and Cu through histidine residues and N-terminal region that support metal 
ion binding [27,28]. One study suggests that under metal-free conditions Aβ is thermodynamically soluble at physiological concentrations 
[29]. Metal ion binding appears to alter Aβ conformation and lower the kinetic barrier to precipitation [30]. 
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In addition to promoting aggregation, Aβ/Cu, and to a lesser extend Aβ/Fe complexes, can engage in redox reactions. Aβ reduces Cu(II) 
and Fe(III), to Cu(I) and Fe(II) respectively with a concurrent generation of ROS- H2O2 and OH•. 

The likely mechanistic reaction scheme is as follows [31]:

(Aβ)2 + M(n+1)+ -> Aβ:Aβ+• + Mn+

The reduced Fe(II)/Cu(I) then reacts with molecular oxygen (O2) to generate the superoxide anion (O2

-)

Mn+ + O2 -> M(n+1)+ + O2

-
 

The O2

-
 generated undergoes peroxidation to H2O2 and O2 either by the SOD enzyme or spontaneously.

O2

- + O2

- + 2H+ -> H2O2 + O2  

Similarly, the reduced metals can directly interact with H2O2 to generate the highly reactive OH• by the Fenton reaction (Cu(I) which 
catalyzes this reaction at a rate-constant magnitude higher than that for Fe(II)) [32].

Mn+ + H2O2 -> M(n+1)+ + OH• + OH-  

Aβ/metal complexes can recruit other biomolecules to deradicalize the Aβ peptide component and regenerate the complex for further 
redox reactions and ROS generation [33-35]. The hydroxide radicals generated by these reactions have been implicated in the cytotoxic 
actions of Aβ [36]. 

Aβ peptides exposed to exogenous ROS oligomerize and form aggregates [37]. Conversely, oligomerization is attenuated by catalase and 
ROS quenching metals [38]. Thus, the metal-mediated redox activity of Aβ may generate ROS that promote the peptides own modification 
and pathological oligomerization [39-41]. Data on Aβ/metal complexes comes mostly from in vitro experiments [42]. However, taken 
together these findings are compelling evidence for direct Aβ/metal redox activity as a major source of the widespread neurodegeneration 
and oxidation damage that occurs with AD [26, 43-45].

The 5’-untranslated region (5’UTR) of APP mRNA has a functional iron-response element (IRE) [46] that is consistent with a role for 
APP as a redox-active metalloprotein [47]. We found redox-active Fe3+ and Cu2+ but not Zn2+ ions promoted APP expression via its 5’UTR 
in a dose-dependent manner [48]. 

Metal dysregulation and chelation strategies 

A plethora of evidence including meta-analysis, in vitro and in vivo and pre-clinical studies align with the notion that biometal imbalance 
is one of the risk factors for AD. As such, the metal hypothesis stresses the implication of dysfunctional endogenous mechanisms that lead 
to toxicity build up [49,50]. For example, microarray expression profiling the dichotomy between AD and healthy brains found a genetic 
dysregulation [51]. Compared to age-matched controls, expression levels for metal regulatory genes such as metallothionein III (MT-III) 
and metal regulatory factor-1 (MTF-1) are decreased 4-fold in AD brain [52]. Moreover, protein levels of MT-III are also attenuated in AD 
brain [53,54]. As such chelation therapies may benefit AD patients as a therapeutic [55,56]. 

Metal chelators dissolve amyloid deposits in post-mortem AD brain and attenuate cerebral Aβ load in an AD transgenic mouse model 
[57,58]. In fact, administration of the metal chelators desferrioxamine (DFO) or clioquinol (CQ) has been reported to be efficacious for 
AD patients [59-61]. Intramuscular DFO reduced cognitive decline over two years [59,62]. Furthermore developed the novel amyloid-
targeting metal chelator XH1 that also shows promise as a therapeutic agent for AD [63]. Strategies to attenuate side effects is through 
the production of novel low-affinity metal-complexing agents that show higher specificity for particular transition metals called metal-
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protein attenuating compounds (MPAC). One compound is PBT2 which blocks the binding of Cu (II) and Zn (II) to proteins and inhibits 
Aβ biogenesis [64]. PBT2 reduced β-amyloid load in a transgenic mouse model of AD. Most recently, clinical trials of PBT2 significantly 
and specifically reduced Aβ levels in the CSF of patients with minimal adverse effects [65-67]. The issue of toxicity is critical in drug 
development. Findings for PBT2 suggest the MPAC strategy is likely to minimize undesirable side effects of chelating therapies while 
maintaining efficacy in treating AD [65]. Further advances under development for MPAC include combining these agents with nanoparticle 
delivery systems. Furthermore, elucidating access in to the CNS is important for strategies pathways due to the hydrophilicity with chelating 
agents. High metal affinity and inability to distinguish between transition metals can lead to neurotoxicity. Therefore, nanoparticles have 
been developed in mitigating these issues. 

Nanoparticle drug delivery systems and nanotheranostics 

Restrictive passage imposed by the blood-brain barrier (BBB) is the major impediment for efficient cerebral drug delivery [51]. As the 
brain’s main defense mechanism against foreign pathogens and toxins, the BBB is complex and highly regulated [68]. The fenestrated, 
though extremely tightly packed, endothelial cells of the BBB prohibit the entrance of drugs and large particles to the brain by regulating 
transport mechanisms at the cell surface [11]. Efforts to improve the efficacy and limit the adverse effects have been sought though the 
use of nanotechnology as a promising avenue [69]. 

For example, dendrimers are large, spherical, branched molecules. Interestingly, low concentrations of dendrimers inhibit aggregation 
of the Aβ peptides and the prion protein (PrP185-208) forms amyloid in spongiform encephalopathies (TSEs) [70]. Administration of 
hydrated fullerene (carbon nanosphere) can also inhibit Aβ fibrillation and improved cognitive performance in a rodent AD model [71]. 
The mechanism for these molecules anti-amyloid activity appears to involve suppression of peptide nucleation, an early step common 
to many amyloidosis pathways. As therapeutic anti-amyloid drugs dendrimers and fullerenes have the additional advantage of showing 
relatively high BBB permeability. 

Other efforts to penetrate the BBB is through imitating low-density lipoproteins (LDL) facilitate passage across the BBB [72] since they 
can be taken up without producing environmental changes or disrupting the integrity of the barrier [73,74]. 

Experiments have demonstrated that nanoparticles of the rapidly biodegradable polybutylcyanoacrylate (PBCA) can be successfully 
delivered to the brain of living rats [75]. Moreover, PBCA nanoparticles have been used to increase tacrine levels in the brain through 
intravenous methods [76]. In brief, the researchers concluded tacrine concentration was enhanced by 4.07-fold. The same group applied 
PBCA to enhance delivery of rivastigmine by coating it with PBCA and observed an increase of 3.82-fold compared to a free drug. 

Chelation therapy has been investigated to solubilize Aβ plaques. An application of a quinoline derivative, clioquinol (CQ) in a transgenic 
mouse model of AD resulted in a 49% decrease in Aβ deposition as compared controls [57]. Upon production of PBCA-CQ NPs, results 
produced a more efficient brain entry and a reduction of aggregated Aβ in double transgenic mice (APP/PS1) [77]. 

Nanoparticles are also promising tools for in vivo imaging and diagnosis of amyloidosis. Thus, imaging and contrast agents for amyloid 
have been developed. Assays for AD biomarkers such as Bio-barcode assay is an innovative technique that uses nanoparticles to measure 
levels of soluble Aβ oligomers (ADDLs) in biological fluids. The Bio-barcode assay can measure ADDLS in human CSF, which is beyond 
the sensitivity of conventional techniques [78]. Furthermore, to detect and remove plaques Siegemund and his team harnessed the dye, 
Thioflavin-T (ThT). Although ThT is hydrophilic, the dye was encapsulated within a PBCA shell composed of a polystyrene core given ThT 
the ability to target and identify Aβ fibers with the onset of the disease in transgenic mice using confocal laser scanning microscopy [79]. 
Overall, the inherent power of nanofabrication to generate materials with precise physiochemical properties also suggests that there is a 
good possibility of overcoming current and future limitations of nanotheranostics.
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Reactive oxygen/nitrogen species and Alzheimer’s disease

The role of nitric oxide (NO) in AD pathophysiology has not been elucidated. Reports show contrasting results of either neurotoxicity 
or neuroprotective actions [80-82]. Study’s suggests the neurotoxic mechanism of NO interacts with superoxide (O2

-) generating 
peroxynitrite (ONOO-) causing a downstream cascade of elevated of reactive nitrogen species (RNS) [83-85], nitroxidative stress [85,86] 
and induction of apoptosis in neuronal cells [87,88]. Conversely, neuronal expression of NO has been observed to be protective under 
conditions of ischemia reperfusion [89,90] through inhibition of inositol-1,2,5 triphosphate and leukocyte accumulation [91,92]. Thus, 
strategies to administer NO as a treatment for AD are being considered [93]. Overall, biometal homeostasis is critical to ROS generation 
in cerebral tissue. Thus, restoring dysregulation of metals in AD is likely to be key for ensuring NO plays a helpful neuroprotective role as 
opposed to contributing to pathology. 

Increased metal level has been prone to elevate ROS which leads to the transition of insoluble tau filaments through the association with 
cerebral dysregulation. Increase of NTF depositions leads to oligomerization and eventual neurodegeneration [94-96]. Secondly, elevated 
ROS have been associated with compromising plasma membrane integrity and release of oxidized fatty acids into the extracellular space 
causing more production of tau filament polymerization [97]. Thirdly, ROS has been observed to inactivate enzymes such as isomerase 
Pin1 which mediates tau dephosphorylation. Consistent with this finding, Pin1 has been shown to be oxidized and down-regulated by 
conditions in AD hippocampus [98].

NF-κB and Alzheimer’s disease

NF-κB plays a major role in the activation of inflammatory responses and is critical in oxidative stress and neuronal apoptosis mechanisms 
[99]. Importantly, NF-κB is activated by RNS. Increase of RNS levels have been observed with redox-active metals. Thus, NF-κB may be 
a useful downstream target for ameliorating metal-mediated oxidative stress and associated neurodegenerative pathologies. Consistent 
with this therapeutic strategy, administration of the NF-κB agonist indomethacin dramatically reduced β-amyloid load in a transgenic 
mouse model of AD [100,101]. NF-κB levels also appear to be abnormally high in the brains of AD patients [102]. NF-κB inhibitor such as 
transportan10 has been reported to mediate a protective role against ROST generation in cultured glial cells [103]. This suggests NF-κB 
may also have efficacy in directly attenuating Aβ/metal mediated oxidative stress. As such, NF-κB antagonists are promising agents for 
ameliorating the neurodegenerative effects of metal-induced oxidative stress. However, recent findings suggest a greater understanding 
of the complex pathways mediated by NF-κB is needed before considering these agents for clinical trial. Administration of high doses of 
hypericin, a transient activator of NF-κB, has been reported to induce apoptosis. However, surprisingly, at low doses hypericin appears to 
protect against Aβ cytotoxicity [104]. Similarly, at least one class of NF-κB inhibitor activates caspase3 and caspase6, proteases associated 
with apoptosis [42,105].

NF-κB, in common with NO, appears to be either protective or cytotoxic to neuronal tissues depending on conditions in the surrounding 
brain parenchyma. Unfortunately, the critical conditions that differentiates NF-κB as a pro-apoptotic agent from an anti-apoptotic agent 
remain to be characterized. It is to be hoped the elucidating the pathways mediated by this promising drug target will become a focus of 
effort in the near future.

Conclusion

The vast majority of therapeutic strategies over the last 25 years have focused on reducing levels of the Aβ peptide in brain. However, 
recent developments point to a clear and pressing need to explore alternative AD treatment strategies since clinical trials aimed at 
attenuating Aβ generation or promoting the peptides clearance have limited efficacies and/or serious side effects [106-113]. Thus, 
development of AD lesion-specific metal complexing agents combined with nanotechnology have made promising breakthroughs. In 
addition to attenuate Aβ and tau associated pathology [67,77], clinical trials have shown their efficacy in attenuating other AD symptoms 
[61,65] and low toxicity [67]. Overall, aforementioned compounds show considerable promise as drug delivery vehicles and diagnostic 
tools for AD.
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