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Traditional view of cellular signaling was based on the assumption that each protein has only two states, active an inactive, like a light
switch, that can be “on” or “off”. This view was applied to cell surface receptors and downstream signaling proteins, including G protein-
coupled receptors (GPCRs) and their immediate signal transducers, G proteins and arrestins. Arguably the most enduring model of GPCR
signaling, extended ternary complex model [1] explicitly posited the existence of the receptor in two states, R (inactive) and R* (ac-
tive). Based on this assumption, the model posited that G proteins interact only with the R* state, forming the signaling ternary complex
agonist-R*-G protein [1]. As the signaling of prototypical GPCR, rhodopsin, was quenched by receptor phosphorylation followed by the
binding of arrestin [2], the field assumed that G proteins, GPCR kinases (GRKSs), that selectively phosphorylate active GPCRs (reviewed in
[3]), and arrestins recognize the same active state of the receptor, so that GPCR desensitization can be explained by a simple competition
between G proteins and arrestins for the active receptor [4,5]. This view was extrapolated to the whole GPCR family [6]. The first bio-
physical data appeared to support this simplistic model: GPCR activation was found to require a rigid body motion of the transmembrane
helices [7]. Inter-helical distance measurements using pulse EPR technique double electron-electron resonance (DEER) in the inactive
and light-activated rhodopsin generally agreed with this model [8], although close inspection of distance distributions shows multiple
peaks in some cases, which suggests that things may not be that simple [8]. Crystal structures of inactive [9] and light-activated [10,11]
rhodopsin, as well as the structures of a prototypical non-visual GPCR, B2-adrenergic receptor (2AR), also in the inactive [12] and active

agonist-liganded state [13] revealed the expected helix movement upon activation and appeared consistent with this two-state model.

Inherent constitutive activity of GPCRs and the action of activity-suppressing inverse agonists could also be interpreted in the context
of the two-state model, although the first complications arose: the presence of the G protein greatly affected the spectrum of a conforma-
tionally sensitive fluorescent probe, in fact, to a greater extent than the ligand [14]. This could still be accounted for by the idea that the li-
gands and G protein simply change the fraction of the receptor population in each of the two states. However, the structure of the complex
of the B2AR with its cognate G protein, Gs [15], was quite different from the structure of agonist-liganded receptor [13], suggesting that
the receptor can assume more than one conformation in its active state. In case of the $2AR this issue was directly addressed by the ap-
plication of several biophysical methods [16]. The data showed that the unliganded or antagonist-liganded receptor exists in equilibrium
of several conformations, with at least two apparently inactive, whereas the agonist shifts this equilibrium towards presumably active
states, of which there are also more than one [16]. In fact, the number of discernible active states depends on the method used to detect
them [16], suggesting that even the most sensitive method yields the minimum number of distinct states, rather than revealing all states
that are present. These data are consistent with the existence of multiple active and inactive states revealed by intra-rhodopsin distance
measurements earlier [8]. Careful comparison of the conformations of light-activated rhodopsin in detergent and in a native-like lipid
environment in nanodiscs revealed that while the receptor appeared to act as a simple on-off switch in the detergent, in lipid environ-
ment even spectroscopically homogeneous active Meta rhodopsin IIb+ state was represented by several conformations, more than one of
which was selected by its cognate G protein transducin [17]. Thus, active GPCRs are by no means present in a single active conformation,
but rather exist as a conformational ensemble, raising a possibility that distinct states might favor different signal transducers [17]. This
is in line with the current understanding of biased GPCR signaling: different ligands, orthosteric and allosteric, selectively increase the
abundance of distinct GPCR conformations, thereby directing the signaling to different transducers (reviewed in [18-20]). Importantly,
conformationally encoded bias applies not only to the G protein-arrestin dichotomy, which is usually assumed. Many GPCRs couple to
more than one type of G proteins. Recent finding that receptor-bound Gs and Gi assume different poses, and that Gi requires much smaller
outward movement of the transmembrane helix VI [21], suggests that preferential coupling to an individual G protein subtype out of sev-
eral possible can be also imparted by the agonist that shifts the receptor into a particular active conformation. Structures of the complexes

of the same receptor with different G proteins are needed to definitively resolve this issue.
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As far as conformational flexibility is concerned, GPCRs are not unique among signaling proteins. Two signal transducers, G proteins
and arrestins, illustrate this point. While crystal [15,22] and cryo-EM [23,24] structures of the complexes of different GPCRs with Gs show
one particular conformation of the bound G protein, biophysical methods suggest that receptor-associated G protein is quite flexible, ex-
isting in many conformations [25,26]. In particular, relative orientation of the helical and Ras-like domains of the G protein a-subunit does
not appear to be fixed. Functional role of this flexibility remains to be elucidated. The inspection of the distribution of measured DEER
distances within Gi a-subunit in all four functional states (inactive free, inactive in heterotrimeric complex with By-subunits, receptor-
bound heterotrimer, and GTP-liganded active free a-subunit) shows multiple peaks [27], suggesting that Gi a-subunit remains very flex-
ible in every state. As Gi a-subunit interacts with several partners, effectors as well as RGS proteins that facilitate its self-inactivation, it
is entirely possible that distinct Gi a-subunit conformations have different functional preferences, selecting specific interaction partners.

The structures of the complexes of the Gi a-subunit with effectors and RGS proteins are needed to test this idea.

The same is true for arrestins, that, in addition to their role in precluding G protein coupling to the receptor [2,4-6,28], were recognized
as yet another class of signal transducers (reviewed in [29-31]). In their basal state, all four vertebrate arrestins have remarkably similar
conformations [32-37]). The conformations of arrestin-1 [38], arrestin-2 [39], and arrestin-3 [40] activated by various means, as well as
arrestin-1 in complex with rhodopsin [41-42] are also quite similar and clearly differ from the basal conformations. This can be inter-
preted as arrestins having only two conformational states, active and inactive. However, the distributions of distances between selected
points in both free and receptor-bound arrestins, measured by DEER, are fairly wide [43-44], suggesting that arrestins are flexible in both
states, exploring a pretty wide conformational space. This conclusion is also supported by the NMR data [45]. Some binding partners,
such as ubiquitin ligases Mdm2 [46] and parkin [47], preferentially bind basal arrestins, others, like ERK1/2, prefer receptor-bound form
[48], while some, like JNK3 or MEK1, effectively bind both [46,48]. Each non-visual arrestin was found to interact with more than 100 dif-
ferent non-receptor partners [49], which would be impossible without high conformational flexibility of these relatively small ~45 kDa
proteins (reviewed in [50,51]). This notion is supported by the findings that separated arrestin peptides that do not have conformational
constraints they would have in the full-length folded protein, bind known arrestin partners. The C-terminus of arrestin-2 binds two main
components of the internalization machinery of the coated pit, clathrin and clathrin adaptor AP-2, thereby suppressing arrestin-depen-
dent GPCR internalization in cells expressing receptors [52]. The N-terminus of arrestin-3 binds JNK3 and upstream kinases ASK1 and
MKK4/7, facilitating JNK3 activation in cells [53]. Interestingly, careful inspection of all available structures shows that the transition from
basal to active group of conformations induces significant changes in several arrestin elements, which identifies these parts as the most

likely docking sites of proteins that preferentially bind inactive or active arrestins [54].

Arrestins apparently need three receptor-attached phosphates for high affinity binding [42,55,56]. Most GPCRs have a lot more than
three phosphorylation sites, which suggested an idea that differential receptor phosphorylation can result in distinct conformations of
receptor-bound arrestins that lead to distinct signaling capabilities of the complex [57,58]. While this tempting idea still needs to be
confirmed experimentally, preferably by solving the structures of the complexes of the same arrestin with the same differentially phos-
phorylated receptor, numerous lines of indirect evidence suggest that it might be correct. Several distances between selected points in
arrestin-1 and bound rhodopsin were measured by DEER [41,42]. In each case, complex distance distributions with multiple peaks were
detected. While the most probable one invariably matched the crystal structure, the existence of alternative distances suggested that
the complex likely has different “flavors”, only one of which was captured in crystal. By the use of pairs of fluorescent substitutions in
non-visual arrestins it was recently shown that in cells receptor-bound arrestins demonstrate distinct conformational signatures that
correlate with their functions [59,60]. In agreement with these data, differentially phosphorylated receptor peptides were shown by NMR
to induce distinct conformations of purified arrestin-2 [61]. In fact, the flexibility of the complex is the most likely reason for an apparent
contradiction between the crystal structure of the arrestin-1-rhodopsin complex [41,42], where most of the concave side of the arrestin
C-domain does not contact the receptor, and EPR evidence that many residues on this surface come into contact with the receptor in vi-
sual arrestin-1 [62] and non-visual arrestin-2 [63]. Moreover, numerous residues on the same concave side of the C-domain were found
to determine receptor preference of arrestins [63-66], which suggests that they must contact GPCRs in the complex, even though they do

not in the crystal structure.

Conclusion

In summary, the ability to assume numerous conformations is an inherent property of GPCRs, G proteins, and arrestins, and very likely
all proteins involved in cellular signaling. Mutations that affect conformational flexibility of GPCRs [67,68] and arrestin-1 [69,70] were
shown to underlie congenital disorders in humans. The fact that signaling proteins do not function as on-off switches, existing in only two
(active and inactive) conformations, should always be taken into account. Conformational flexibility is the key to understanding protein

function, and it is particularly important for the signaling proteins pharmacology deals with.
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Footnote

'Here we use the systematic names of arrestins, where the number after the dash indicates the order of cloning: arrestin-1 (historic

names S-antigen, 48 kDa protein, visual or rod arrestin), arrestin-2 (B-arrestin or f-arrestinl), arrestin-3 (B-arrestin2 or hTHY-ARRX),

and arrestin-4 (cone or X-arrestin).
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