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Parkinson’s disease (PD) is a progressive neurodegenerative disorder characterized by rigidity, resting tremor, and bradykinesia. It is 
produced by the selective loss of dopaminergic neurons within the substantia nigra pars compacta (SN). PD affects millions people world-
wide being the second most common age-related neurodegenerative disorder with a prevalence of 1900 per 100,000 in people over 80 
years and 41 per 100,000 in people around 40 - 50 years of age. Symptoms may appear when about 80% of dopaminergic cells are lost 
although neurodegeneration might start decades before the onset of motor symptoms. The etiology of PD and the exact cause of dopami-
nergic cell loss are unknown. At least 15 genes have been associated with PD but genetic causes are responsible for a minority of cases. 
Instead, epidemiologic studies associate the risk of PD with exposure to environmental toxicants such as pesticides, herbicides, solvents, 
metals, and pollutants. Additional risk factors are drugs, brain trauma and cerebrovascular damage. The first causal relationship between 
toxins and PD started in 1982 when it was discovered that 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) (Figure 1), present as 
a contaminant in a synthetic drug, caused idiopathic PD in drug abusers [1]. Afterward, extensive research has characterized MPTP as a 
selective neurotoxin inducing most of the biochemical, pathological, and behavioral features of PD, but not all (e.g. absence of Lewy bod-
ies of α-synuclein aggregates). MPTP crosses the blood-brain barrier and is metabolized (activated) by MAO-B to an intermediate that is 
ultimately converted to 1-methyl-4-phenylpyridinium cation (MPP+). MPP+ is selectively transported into dopaminergic neurons by dopa-
mine transporter (DAT). MPP+ concentrates into mitochondria and inhibits Complex I. These events result in mitochondrial dysfunction 
and dopaminergic cell death by apoptosis leading to dopamine depletion and Parkinsonism. Relevant aspects are: toxicity is produced 
by a metabolite of MPTP, activation to pyridinium cation is essential for neurotoxicity and is blocked by MAO-B inhibitors, and selectivity 
depends on the selective uptake of MPP+ by dopaminergic cells through DAT.

Figure 1: Dopaminergic neurotoxins.
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Human exposure to MPTP was accidental but pointed out to environmental or endogenous neurotoxins as possible causes of PD. 
Today, this hypothesis is still valid and the issue remains open. Other neurotoxins are being evaluated (Figure 1). Compounds contain-
ing N-methyltetrahydropyridine and N-methylpyridinium have been considered [2]. Synthetic analogues of MPTP are neurotoxins when 
metabolized by MAO to toxic pyridinium cations. Drugs containing N-alkyltetrahydropyridine (e.g. haloperidol) are metabolized to toxic 
pyidinium cations by CYP enzymes. The popular herbicide paraquat (PQ), a bipyridinium cation (MPP+-like cation), has been increasingly 
characterized as a neurotoxin in animals and humans [2,3]. Exposure to PQ in humans remains frequent and exposure to low levels may 
be related with the etiology of PD. Mechanisms of PQ-induced toxicity include oxidative stress (PQ is a redox-cycling agent), mitochondrial 
dysfunction, apoptosis, aggregation of α-synuclein, reduction of proteosomal activity, and autophagy. PQ-induced neurotoxicity follows a 
mechanism that differs from MPTP/MPP+, and is less selective for dopaminergic cells [2]. Naturally-occurring alkaloids such as tetrahydro-
β-carbolines (THβCs), β-carbolines (βCs) and tetrahydroisoquinolines (TIQs) commonly occur in foods and tobacco smoke, and appear in 
mammalian fluids and tissues including human brain [2]. These alkaloids are bioactive substances that exert numerous effects in the CNS. 
Their corresponding β-carbolinium (βC+s) or isoquinolinium (IQ+s) cations are toxic substances (pyridinium-like cations) (Figure 1). Some 
TIQs like salsolinol are also toxins due to their capacity to increase oxidative stress. βC+s and IQ+s cations are substrates for the DAT in 
dopaminergic cells, inhibit mitochondrial respiration at Complex I level, increase reactive oxygen species (ROS), induce cell apoptosis and 
produce neurotoxicity in animals generating bradykinesia, reduction of dopamine content in the striatum and dopaminergic cell death. 
Several βC+s (e.g. 2,9-diMe-βC+s) approach MPP+ in potency as mitochondrial inhibitors but have lower selectivity for dopaminergic cells. 
Metabolic activation of THβCs and βCs alkaloids to βC+s and IQ+s is carried out by N-methyltransferases and peroxidases. In contrast, CYP 
enzymes detoxify those products [2]. CYP enzymes are subjected to individual variations and genetic polymorphisms (e.g. CYP2D6) being 
an interesting issue in the metabolism of MPTP and THβCs. Currently, it is unknown whether continuous exposure to βCs or TIQs affords 
toxic cations in a significant manner in the short or long-term, or whether instead they exert neuroprotective actions [2,4,5]. Other toxins 
are not related to pyridinium cations (Figure 1). The rodenticide rotenone is a mitochondrial toxin that induces dopaminergic neuronal 
loss and PD behavioural symptoms in animal models [6]. It is a potent inhibitor of mitochondrial Complex I, generates ROS and oxidative 
stress, mitochondrial dysfunction, apoptosis, microglial activation and inflammation, and facilitates formation of α-synuclein aggregates. 
6-Hydroxydopamine produces neurotoxicity in animals following intracerebral injection in the SN by oxidative stress due to massive 
generation of ROS leading to dopaminergic cell death [7]. The list of dopaminergic toxins could be possibly enlarged to include other pes-
ticides, organic solvents, organochlorines, environmental pollutants, non-protein toxic amino acids such as β-N-methylamino-L-alanine 
(ΒMAA) or β-N-oxalylamino-L-alanine (BOAA), metals (manganese) and dopaminochrome. Future works with these substances might 
offer new clues on PD etiology. Animal models of PD based on toxins are essential tools in PD research. The most common employ MPTP, 
rotenone or PQ. MPP+ and 6-hydroxydopamine are also common but they are administered directly into the brain. Models based on βC+s 
and TIQ (e.g. salsolinol) have been also reported. No single compound is able to reproduce all the hallmarks of PD and the mechanisms of 
toxicity differ between toxins what should be considered in studies of neuroprotection. New animal models of PD employ genetic manipu-
lations based on mutations of familial cases of PD (α-synuclein, DJ-1, PINK1, parkin) or that disrupt nigrostriatal neurons. Those models 
may be useful to investigate relations between environmental toxins and genetic factors. 

Human epidemiological studies suggest consistently that pesticide exposure is linked to a higher risk of PD. Human subjects with 
chronic exposure to pesticide present microstructural changes in the SN, underlying the risk of PD in pesticide users [8]. Evidences link-
ing PD with paraquat, rotenone, and organochlorines appear strong while organophosphates, pyrethroids, and polychlorinated biphenyls 
require further studies [9]. No epidemiological studies have attempted to correlate exposure to β-carbolines with PD despite extensive 
research reporting the presence of these compounds in foods and tobacco smoke [10]. Cigarette smoke and coffee are two important 
sources contributing to human exposure to βCs [11,12] but epidemiological studies have generally found an inverse relationship between 
coffee consumption or smoking and the risk of PD. The use of psychoactive products containing high levels of β-carbolines such as Aya-
huasca (Banisteriopsis caapi) or Peganum harmala seeds have not been associated with PD, and instead they have been used to treat the 
disease [2]. Because PD is progressive and develops over many years, long-term studies are required to elucidate the actions of toxins 
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while considering genetic factors. In fact, dopaminergic neurons have an inherent high vulnerability toward environmental and/or en-
dogenous toxins. This sensitivity may likely contribute to the etiology of PD because humans are exposed to many toxins during their life-
time. Different toxins could contribute to the disease. More research is needed to identify and characterize these toxins. As neurotoxins 
are activated/deactivated by metabolic enzymes, more work is needed to elucidate those mechanisms. Finally, new insights are needed to 
unravel interactions between environmental neurotoxicants and genetic factors.
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