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In the current global epidemic for chronic disease the 
incidence of obesity and diabetes has been associated with 
non-alcoholic fatty liver disease (NAFLD) and insulin re-
sistance in the developing and developed world and may 
rise to between 30 - 40% of the global population by the 
year 2050 [1,2]. Drug therapy to delay the complications of 
obesity and diabetes has escalated with the use of chronic 
disease medications [3] such as cholesterol lowering drugs, 
vascular drugs, appetite drugs and Alzheimer’s disease 
drugs that assist in neuron-synapse connections. NAFLD 
interferes with the hepatic pharmacodynamics of various 
drugs with increased blood and brain drug levels that are 
side effects to chronic diseases. The success of the use of 
these chronic disease medications may require nutritional 
interventions that accelerate drug metabolism [4,5] and im-
prove insulin resistance and endocrine therapy associated 
with the delay in the pathogenesis of NAFLD. 

Hepatic pharmacokinetics associated with blood and 
brain drug levels require the activation of the calorie sen-
sitive gene Sirtuin 1 (Sirt 1) to prevent circadian rhythm 
imbalances that interfere with brain interactions with he-
patic drug metabolism [2,6-8]. Sirt 1 is now referred to as 
the heat shock gene [9-11] with its critical role in the me-
tabolism of heat shock proteins (HSPs) such as HSP 60, 70 
and 90 [12]. Sirt 1 is involved in suprachiasmatic nucleus 
regulation [2,6] with relevance to core brain temperature 

control in man and cattle [7,8]. Sirt 1 is downregulated by 
excessive heat/cold, high calorie diets and oxidative stress 
associated with increases in HSP 70 levels [12-14]. Sirt 1 
deacetylates heat shock factor 1 (HSF1) that is important 
to the expression of heat shock proteins (Figure 1) with rel-
evance to interactions with amyloid beta for metabolism in 
the brain and liver [15].

Figure 1: Overnutrition is involved with the downreg-

ulation of the calorie sensitive gene Sirt1 and inacti-

vation of HSF1 deacetylation. Sirt 1 is connected to 

nutrient, protein, lipid and drug metabolism [6]. Sirt 1 

repression is involved with primary HSP-amyloid beta 

misfolding with the induction of ER stress and inter-

sects with defective drug metabolism and drug toxic-

ity. Harmful temperature regulation inactivates the 

heat shock gene Sirt 1-HSF-1 interactions with inter-

ference of brain and liver drug pharmacokinetics.
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Sirt 1 is involved with regulation of HSF1 for HSP synthe-
sis and mammalian target of rapamycin (mTOR) important 
to body temperature regulation [16,17]. Sirt 1 as a deacety-
lase is important to the transcriptional regulation of nutri-
ents, lipids and drugs [6] with Sirt 1 connections for body 
temperature regulation, HSP and drug metabolism [4,5]. 
Connections between mTOR1 for protein quality control 
and ER stress [18] that involve HSF1 implicate Sirt 1 to be 
important to HSP-amyloid beta misfolding [15] involved 
in ER stress related mitophagy and insulin resistance [5]. 
Downregulation of Sirt 1 induces temperature dysregula-
tion and ER related programmed cell death [19] associated 
with the inactivation of endocrine system in man [20,21]. 
Temperature regulation of HSF1 is closely linked to nutrient 
sensing insulin/IGF-1 signalling, organ development and 
growth [22,23]. 

The events of the heat shock gene Sirt 1 dysregulation 
(stress, heat/cold disorders, overnutrition) may be the 
primary defect in the HSP misfolded protein induction of 
ER stress related to mitophagy/programmed cell death. 
Previous or new drugs may be the innocent bystander in 
drug induced ER stress toxicity [24-27] and may need to 
be re-interpreted with relevance to drug induced ER stress 
in cells. Pharmacological modulation of HSF1 [28-30] with 
relevance to Sirt 1 dysregulation may need to be reassessed 
with relevance to stress induced damage. Heat therapy has 
been used in obesity and diabetes [31] and heat therapy 
intervals need to be carefully determined to prevent inac-
tivation of Sirt 1 and the induction of misfolded HSPs with 
relevance to hepatic ER stress and inactivation of drug and 
cholesterol metabolism.

CONCLUSION

Drug and endocrine therapy to delay the complications 
of obesity and diabetes has escalated with the use of chron-
ic disease medications to improve therapy in the presence 
of ER stress induced mitophagy. Nutrient assessment in 
diabetes has increased to activate the heat shock gene Sirt 
1 and to prevent ER stress that may be the critical to the 
prevention of drug induced toxicity, ER stress and mitoph-
agy. Heat therapy may lead to inactivation of the heat shock 

gene Sirt 1 with inactivation of various critical drug and en-
docrine therapies essential for multiple organ dysfunction 
syndrome.
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