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Abstract

A simultaneous differential scanning calorimetry-Fourier transform infrared (DSC-FTIR) microspectroscopy was first used to di-
rectly prepare and detect the amorphous information of indomethacin (IMC) in the γ-IMC/Soluplus physical mixture with or without 
solvent evaporation via two consecutive heating-cooling cycles via a one-step procedure. The thermal-induced phase transformation 
of Soluplus or different IMC polymorphs was also studied by DSC analytical method and this one-step DSC-FTIR combined approach. 
The result of this study indicates that the amorphous IMC exhibited three characteristic IR peaks at 1710, 1683 and 1591 cm-1 with 
a shoulder at 1735 cm-1. Four transitions in the three-dimensional FTIR spectral contour map of amorphous IMC were observed, and 
finally transformed to α-IMC and γ-IMC, in agreement with the changes in DSC curve of the amorphous IMC. The intramolecular hy-
drogen bonding occurred in the carboxylic acid dimers of γ-IMC structure was gradually dissociated in the γ-IMC/Soluplus physical 
mixture via the first-heating run by using this one-step DSC-FTIR combined approach. After the first heating-cooling cycle, the amor-
phous formation of IMC in the IMC/Soluplus amorphous solid dispersion (ASD) system was successfully produced due to the appear-
ance of both characteristic IR peaks at 1682 and 1594 cm-1 for the amorphous IMC formed. However, this IMC/Soluplus ASD system 
formed only showed a consistent three-dimensional FTIR spectral contour map in the second-heating run without any changes. On 
the other hand, the γ-IMC/Soluplus physical mixture after solvent evaporation revealed similar consistent three-dimensional FTIR 
spectral contour maps after first and second heating-cooling runs, since the IMC/Soluplus ASD system was already formed after sol-
vent evaporation. Since the DSC-FTIR combined technique gives spectroscopic and thermodynamic information, both the induction 
and identification of the amorphous IMC formation and phase transition of samples could be simultaneously obtained. The present 
study clearly evidences that this simultaneous DSC-FTIR combined approach was not only capable of preparing the IMC/Soluplus 
ASD system from physical mixture but also capable of determining the amorphous formation of IMC in the IMC/Soluplus ASD system 
in real-time via a one-step procedure. 
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Introduction
More than 40-60% of commercially available active pharmaceutical ingredients (APIs) have been reported to have poor water solubil-

ity problems, leading to the limitation of their efficacy [1-2]. The FDA’s Biopharmaceutics Classification System (BCS) is based on the work 
of Prof. Amidon and coworkers to predict in vivo performance of drug products from in vitro measurements of solubility and permeability 
[3-5]. In order to solve the problems of poorly water soluble and low dissolution rate of many APIs, various pharmaceutical technologies 
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Recently, solid dispersion is one of the most promising technologies in pharmaceutical industry to improve the oral bioavailability 
of poorly water-soluble drugs [9-12]. Solid dispersions of drugs can be easily prepared by different methods to render and maintain 
the drug in the amorphous state and/or adequately dispersing it within a carrier matrix. Since the amorphous form of APIs has higher 
solubility than its crystalline form, thus the use of amorphous from may provide an opportunity to potentially improve solubility and bio-
availability of APIs [12-13]. In the formulation design by using solid dispersion techniques, it is possible to choose a suitable polymeric 
carrier to modify the molecular mobility, relaxation times and intermolecular interaction of APIs in the solid dispersions [14-15]. 

Although amorphous APIs have an advantage to enhance the bioavailability of poorly soluble APIs, the amorphous form of API is 
always in a highly metastable state to drive towards crystallization during manufacturing or storage for losing its original advantages [9, 
16-17]. Thus, how to maintain the amorphous state of API in the solid dosage form is the major challenge in formulation design. Several 
solid dispersions by incorporating the poorly water-soluble drugs into different water-soluble polymers with available methods have 
been widely investigated [12, 17-18]. A proper selection of the polymer carrier is an important key factor in the formulation develop-
ment of solid dispersions. The types of water-soluble polymer carriers play a more critical role in affecting the physical stability of amor-
phous form of drugs during in vitro and in vivo conditions [19-21].

Soluplus® is a new developed amorphous polyvinyl caprolactam - polyvinyl acetate - polyethylene glycol graft copolymer, which 
consists of 57% vinyl caprolactam, 30% vinyl acetate and 13% PEG 6000 [22]. Soluplus has been classified as a member of the fourth 
generation of solid dispersion carriers to enhance the highest degree of dissolution of poorly water-soluble drugs and also to stabilize 
these drugs in the solid dispersions [10]. Particularly, as compared with other classical solubilizers, Soluplus has bifunctional character 
to act as a matrix polymer for solid dispersions and an active solubilizer through micelle formation in water [22-24]. Since the low glass 
transition temperature (Tg) value (approximately 70°C) of Soluplus, it can be easily used to prepare amorphous solid dispersion (ASD) 
system by thermal and/or solvent based methods [22, 25-26]. It has been reported that Soluplus might effectively enhance the absorp-
tion of different BCS class II compounds [22, 24-27]. 
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Indomethacin (IMC) has been described as a typical BCS class II drug with a low bioavailability when administered orally, due to 
its poorly water-soluble property [3]. The water-insoluble property of IMC may increase the incidence of irritating side effects on the 
gastrointestinal tract after prolonged contact time with the mucosa [28]. In addition, IMC has been recently proposed to act as an effec-
tive agent for decreasing the risk of various types of cancers including human breast cancer and esophageal cancer cell lines [29-30], 
suggesting a possible future potential of IMC. Thus numerous attempts have been made to select IMC as a model drug for preparing an 
amorphous form of IMC to enhance its water solubility and dissolution rate from various solid dosage forms [31-33]. However, the re-
crystallization of amorphous IMC under different temperatures and humidities has also been reported to alter its in vitro water solubility 
and in vivo bioavailability [34-36]. 

Nowadays, hot melt extrusion (HME) technique has been considerably established as a novel tool to prepare the ASD system [12, 37-
39], in which the heat is applied to the materials for controlling its viscosity and enabling it to flow through the die during HME process, 
and followed by instant cooling of the melt to form solid dispersions. This demonstrates that the thermal processing plays an important 
role in the preparation of ASD system. During the HME process, not all polymers can be used to induce the amorphization of drugs in 
polymer blends. Thus the selection of a proper polymer carrier is a major issue in the formulation design of ASD system, in which Solu-
plus has been especially designed for HME technology [22-23, 25-27].

In our previous studies, we had used a unique differential scanning calorimetry-Fourier transform infrared (DSC-FTIR) combined 
system to simultaneously investigate the thermal-induced intramolecular cyclization or polymorphic interconversion processes of many 
drugs [40-43]. Moreover, the simultaneous formation and detection of several co-crystals in the solid state had been successfully per-
formed by this unique technique via a one-step procedure [44-48]. This powerful DSC-FTIR technique is a simple, quick, and timesaving 

have been extensively investigated and developed in both academia and industry, including micronization, salt formation, micellar solu-
bilization, cyclodextrin complexation, solid dispersion and others, by combining with different specific processing techniques [5-8].
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tool, and can one-step establish the correlation between the thermal response and the informative IR spectra of structural changes of the 
sample. Here, Soluplus was selected as a polymeric carrier and IMS was chosen as a model drug. The aim of this study was attempted to 
simultaneously prepare and examine the amorphous formation of IMC in the IMC/Soluplus mixture in real-time by using this DSC-FTIR 
combined system as an accelerated method.

Indomethacin (IMC, γ-form) was purchased from Sigma-Aldrich Chemical Co. (St. Louis, Missouri, USA), which was confirmed by 
FTIR microspectroscopy and directly used without further treatment. Soluplus® was kindly obtained from BASF Co., Ltd. (Ludwigshafen, 
Germany). All organic solvents used were reagent grade. Potassium bromide (KBr) crystals were bought from Jasco Co. (Tokyo, Japan). 

The DSC curve of raw material of γ-IMC and α-IMC prepared were determined by DSC analytical technique. Two endothermic peaks 
at 161 and 156°C are respectively observed in the DSC curve (Figure 1A-a and b), which were separately attributed to the fusion of γ-IMC 

The α-form of IMC (α-IMC) was prepared by dissolving γ-IMC in the heated absolute ethanol and precipitated with water at room 
temperature, according to our previous studies [46,49]. While amorphous IMC was prepared by melting IMC at 161°C for isothermal 5 
min and quench cooling in liquid nitrogen [49-50]. Both samples were stored in a desiccator filled with anhydrous calcium chloride. 

A γ-IMC/Soluplus physical mixture with the same weight ratio of γ-IMC and Soluplus was previously weighed, and then mixed well 
in the mortar and pestle. Another γ-IMC/Soluplus physical mixture (weight ratio = 1:1) was previously dissolved in acetone, and then 
evaporated under about 50°C on a hot plate. Soluplus alone was also dissolved in acetone and evaporated under the same process. Until 
all the evaporated samples were completely dried, and then stored in a desiccator filled with anhydrous calcium chloride for further 
studies. 

About 8~10 mg of each sample was respectively analyzed by DSC (DSC, Q 20, TA Instruments, Inc., New Castle, DE, USA) at a heating 
rate of 3°C/min with an open pan system in a stream of N2 gas over a temperature range of 30-250°C. The instrument was calibrated for 
temperature and heat flow using indium as the standard. Moreover, a trace amount of sample was sealed inside two KBr pellets (without 
any grinding process with KBr powders) by direct compression with an IR spectrophotometric hydraulic press (Riken Seiki Co., Tokyo, 
Japan) at 400 kg/cm2  for 15s. The compressed KBr disc was examined by transmission FTIR microspectroscopy (IRT-5000-16/FTIR-
6200, Jasco Co., Tokyo, Japan) with a mercury-cadmium telluride (MCT) detector. All the FTIR spectra were generated by compiling a 
series of 256 interferograms collected at 4 cm-1 resolution and at 100 scans [44-48]. 

Each sample was sealed again into two pieces of KBr pellets, similar to the above procedure. Each compressed KBr disc containing 
differed sample was directly placed onto a micro hot stage (DSC microscopy cell, FP 84, Mettler, Greifensee, Switzerland). This DSC mi-
croscopy cell was then set in an FTIR microspectroscope (IRT-5000-16/FTIR-6200, Jasco). The temperature of the DSC microscopy cell 
was monitored with a central processor (FP 80 HT, Mettler, Greifensee, Switzerland). Each sample disc was previously equilibrated to the 
starting temperature (30°C) and then heated from 30°C to 170°C for γ-IMC, to 200°C for amorphous IMC, or to 250°C for Soluplus sam-
ples with or without mixing with γ-IMC at a heating rate of 3°C/min under ambient conditions. At the same time, the thermal-responsive 
IR spectra were simultaneously recorded in the course of heating process. The operation was performed in the transmission mode [44-
48]. This DSC-FTIR combined system was carried out with a non-isothermal method by two consecutive heating-cooling cycles.

Materials and Methods

Results and Discussion

Materials

Identification of different samples

Preparation of α-IMC and amorphous IMC 

Preparation of γ-IMC/Soluplus physical mixture with or without solvent evaporation 

Identification of different samples

Simultaneous DSC–FTIR microspectroscopic investigations
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Figure 1B indicates the FTIR spectra of γ-IMC (a), α-IMC (b), amorphous IMC (c), pure Soluplus (d) and the acetone-evaporated So-
luplus (e) samples. The FTIR data clearly reveals several characteristic IR absorption bands and their assignments of γ-IMC and α-IMC 
as follows (in cm-1): 1718 [ν(C = O) of carboxylic acid dimer], 1691 [benzoyl ν(C = O)], 1625–1575 and 1480 (C = C of aromatic rings), 
1307 (C–O of acidic group), 1270–1200 (-C-O stretching, ether group), 1068 (C–Cl) for γ-IMC [49-53]; 1734 [non-hydrogen bonded acid 
ν(C = O)], 1692 [benzoyl v(C = O)], 1688 and 1649 [hydrogen bonded acid v(C = O)], 1478 (C = C of aromatic rings), 1320 (C-O of acidic 
group), 1224 (-C-O stretching, ether group), and 1074 (C–Cl) for α-IMC [49-53]. 

The amorphous IMC exhibits a unique FTIR spectrum including a shoulder at 1735 cm-1 [non-hydrogen bonded acid ν(C = O)], 1710 
cm-1 [asymmetric acid ν(C = O) of a cyclic dimer], 1683 cm-1 [benzoyl v(C = O)], 1591 cm-1 [ring vibration of indole], which was markedly 
different from that of the pure γ-IMC or α-IMC between 1750 and 1550 cm-1 and was in agreement with the reported IR spectrum of 
amorphous IMC [49-53]. The band at 1718 cm-1 due to asymmetric acid ν(C = O) of a cyclic dimer for crystalline γ-IMC was shifted to 
a lower frequency of about 1710 cm-1, implying that the dimers formation was also presented in the amorphous state of IMC [50-51]. 
Whereas the characteristic IR absorption bands and their assignments for pure Soluplus and acetone-evaporated Soluplus are listed as 
follows: around 3350-3650 cm-1 [intermolecular hydrogen bonded -OH stretching]; 2927 and 2857 cm-1 [asymmetric and symmetric 
CH stretching]; 1734 (1735) cm-1 [ester carbonyl stretching]; 1635 (1636) cm-1 [tertiary amide C = O stretching]; 1477 cm-1 [C-O-C 
stretching]; 1441 cm-1 [CH3 bending]; 1240 (1241) and 1109 (1111) cm-1 [ester C–O stretching], respectively [23, 52, 54]. There was no 
any change in the FTIR spectra for Soluplus with or without acetone treatment. 

and α-IMC [32, 49-50]. On the other hand, the DSC curve of the amorphous IMC (Figure 1A-c) displays one exothermic peak at 123°C 
and three endothermic peaks at 44, 156 and 161°C. The exothermic peak at 123°C was due to the recrystallization of the amorphous 
IMC after pass through the Tg at 44oC, and another two endothermic peaks at 156°C and 161°C were attributed to the fusion of α-IMC 
and γ-IMC, respectively. This Tg value near 44°C was consistent with the Tg values of amorphous IMC previously reported at 41.25 ± 
1.16°C and 43.0 ± 0.4°C [33,51]. From the DSC data, the amorphous IMC first exhibited an endothermic relaxation peak near at 44°C 
corresponding to glass transition, which was accompanied by exothermic recrystallization, and followed by transformation into α-IMC 
and less often into γ-IMC. This reveals that the amorphous form of IMC was easily prepared by quench cooling of the melt. While the 
DSC thermogram of pure Soluplus shows a broad endothermic peak at 73˚C (Figure 2A-d), which was belonged to Tg of amorphous 
Soluplus [22-23,52]. When Soluplus was previously dissolved in acetone and then evaporated, the DSC curve of the acetone-evaporated 
Soluplus was similar to that of the DSC thermogram of pure Soluplus, suggesting that the solvent evaporation process did not influence 
the amorphous structure of Soluplus. 

Figure 1:  DSC curves and FTIR spectra of γ-IMC (a), α-IMC (b), amorphous IMC 
(c), pure Soluplus (d) and the acetone-evaporated Soluplus (e) samples.
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The conformational and thermal changes in the phase transition of γ-IMC and amorphous IMC samples were directly estimated by 
DSC-FTIR microspectroscopy. A three-dimensional FTIR plot of γ-IMC as a function of temperature is shown in Figure 2. The thermal-
dependent changes in peak intensity for several specific bands are also displayed. The thermal-dependent IR spectral contour and peak 
intensities of γ-IMC were clearly altered around 154°C, close to an onset temperature of melting point at 161°C for γ-IMC in the DSC 
curve. Below 154°C, this three-dimensional FTIR spectral map maintained a nearly constant contour. However, the peaks assigned to 
the C = O stretching for both the carboxylic and benzoyl groups (1500-1800 cm-1) in IMC structure were substantially changed beyond 
154°C. With the increase of temperature, the peak at 1718 cm-1 was gradually shifted to 1714 cm-1. Moreover, a new peak at 1741 cm-1 
was also markedly observed, which might be attributed to the dissociation of hydrogen-bonded carboxylic cyclic dimers in γ-IMC struc-
ture (1718 cm-1) to form the non-hydrogen bonded acid monomer of γ-IMC (1741 cm-1) at higher temperatures [50-55]. Furthermore, 
the peak at 1308 cm-1 (C-O of acidic groups) also exhibited a similar thermal shift to 1317 cm-1. The peaks at 1360 and 1188 cm-1 were 
also shifted to 1352 and 1176 cm-1, respectively. Many specific band intensities for γ-IMC were suddenly changed as the temperature 
exceeded 154°C by DSC analysis. 

Figure 3 displays the three-dimensional FTIR results of amorphous IMC measured by the simultaneous DSC-FTIR method. It is 
evident that the thermal-related changes in IR peak intensity for several specific spectra were clearly observed. These spectral changes 
significantly differed from that of the spectral changes for γ-IMC. Obviously, four marked changes in the IR peak intensities were ob-
served in the three-dimensional contour profile. However, there were no substantial changes in the contour profile before 99°C. Once 
the temperature was beyond 99°C, all the IR peak intensities were slightly decreased at initial and then markedly reduced as the tem-
perature was increased from 114°C to 132°C. Beyond 132°C, all the IR spectral peaks became broader and less intense. However, the 
sharp IR peak intensities reappeared at temperatures > 152°C. The multiple broad IR peaks within 132°C-152°C might be due to the fu-
sion of the recrystallized IMC. The sharp IR peak intensities above 152°C should be corresponded to the phase transformation from the 
molten IMC to α-IMC and γ-IMC. The reappearance of the sharp IR peaks at 1741 and 1714 cm-1 can explain this phenomenon, similar 
to the results of Figure 2 at higher temperatures. In addition, the changes in several specific IR peak intensities with temperature also 
confirm this spectral contour profile.

Thermal-induced structural transformation of IMC polymorphs studied by DSC-FTIR microspectroscopy

Figure 2: Three-dimensional FTIR plot of γ-IMC as a function of temperature by DSC-FTIR combined 
system and the thermal-dependent changes in peak intensity for several specific bands.
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Figure 4 shows a DSC-FTIR data in which a Soluplus alone was heated, cooled and then reheated at a heating rate of 3°C/min 
under ambient conditions. In Figure 4A, it clearly indicates that both IR peaks at 1734 and 1635 cm-1 assigned to the ester C = O and 
tertiary amide C = O stretching vibrations of Soluplus were shifted to 1738 and 1643 cm-1 at higher temperatures in the first-heating 
run. The spectral shifts in the FTIR spectra were due to the dissociation of hydrogen bonding within the molten Soluplus structures 
at higher temperatures. Once the molten Soluplus was cooled to room temperature, its IR peaks at higher wave number were quickly 
returned to the original lower peak position. Since Soluplus is amorphous in nature and has high molecular weight, the molten Soluplus 
was quickly returned to its native amorphous state with unique IR peaks at 1735 and 1635 cm-1 after cooling (Figure 4B). After the 
first heating-cooling cycle, Soluplus shows more consistent and sharp three-dimensional FTIR spectral contour map after the second-
heating run, as shown in Figure 4B. 

Figure 5 reveals the three-dimensional FTIR spectral plots of the γ-IMC/Soluplus physical mixture with the same weight ratio via 
two consecutive heating-cooling-heating cycles. It clearly indicates that several IR peaks at 1735, 1635, 1479, 1441, 1423 and 1371 
cm-1 corresponded to the Soluplus and at 1717, 1692, 1479 and 1455 cm-1 assigned to the γ-IMC were presented in the FTIR spectra 
of γ-IMC/Soluplus physical mixture at the initial temperature, suggesting that both components of γ-IMC and Soluplus were coexisted 
in the physical mixture (Figure 5A). In the first-heating run, the first-heated sample shows the marked changes in the FTIR spectral 
map, particularly in the 1800-1500 cm-1 region (Figure 5A). It is evident that several IR spectral changes and shifts from 97, 157, 162 
and 185°C were observed. In particular, the IR peaks at 1717 and 1692 cm-1 assigned to the γ-IMC disappeared but four new peaks at 
1738, 1687, 1643 and 1604 cm-1 were observed in the IR spectra of the 250°C-heated sample. After cooling to room temperature, four 
IR peaks at 1734, 1682, 1637 and 1594 cm-1 shifted from 1738, 1687, 1643 and 1604 cm-1 were obtained (Figure 5B). Both IR peaks 
at 1734 and 1637 cm-1 were attributed to the Soluplus and at 1682 and 1594 cm-1 were corresponded to the formation of amorphous 
IMC, as compared with Figure 1. This strongly implies that the γ-form of IMC in the γ-IMC/Soluplus physical mixture was gradually dis-
sociated its hydrogen-bonding in cyclic dimers in the polymeric blends with Soluplus via the first-heating run by DSC-FTIR combined 
system. After the first heating-cooling cycle, the formation of IMC/Soluplus ASD system had been successfully produced due to the ap-
pearance of both characteristic IR peaks at 1682 and 1594 cm-1 for the amorphous IMC formed. In addition, Figure 5B also shows the 
consistent contour map for three-dimensional FTIR spectra of the first-heated IMC/Soluplus sample in the second-heating run, since 
the first-heated IMC/Soluplus sample had been completely transformed to an IMC/Soluplus ASD system. 

Thermal-induced amorphous IMC formation in the γ-IMC/Soluplus physical mixture studied by DSC-FTIR microspectros-
copy using alternate heating/cooling cycles

Figure 3: Three-dimensional FTIR plot of amorphous IMC as a function of temperature by DSC-FTIR 
combined system and the thermal-dependent changes in peak intensity for several specific bands.
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Figure 4:  Three-dimensional FTIR plots of pure Soluplus as a function of temperature by DSC-FTIR 
combined system via alternate heating/cooling cycles.
 Key: A, first-heating process; B, second-heating process

Figure 5: Three-dimensional FTIR plot of γ-IMC/Soluplus physical mixture with the same weight ratio 
as a function of temperature by DSC-FTIR combined system via alternate heating/cooling cycles. 
Key: A, first-heating process; B, second-heating process.

Figure 6 displays the comparisons of FTIR spectra of the γ-IMC/Soluplus physical mixture before and after different heating-cool-
ing-heating treatments. Obviously, the appearance of two IR peaks at 1687 and 1604 cm-1 due to the dissociation of hydrogen-bonding 
of the cyclic dimers in γ-IMC structure for the molten IMC/Soluplus blends at higher temperature via the first-heating run (Figure 6b). 
After cooling the molten sample to room temperature, the IR peaks at 1682 and 1594 cm-1 for the amorphous IMC formed in the IMC/
Soluplus ASD system were observed (Figure 6c). By reheating the IMC/Soluplus ASD system, the same FTIR spectrum as Figure 6b was 
also obtained (Figure 6d). From the results of Figures 5 and 6, it strongly implies that simultaneous DSC-FTIR combined system was 
not only capable of producing the IMC/Soluplus ASD system from physical mixture but also capable of determining the amorphous 
formation of IMC in the IMC/Soluplus ASD system in real-time via a one-step procedure.
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Similar DSC-FTIR spectral contour profiles were obtained for the γ-IMC/Soluplus physical mixture after acetone evaporation 
at 50°C on a hot plate. Figure 7 shows the three-dimensional FTIR spectral plots of the acetone-evaporated IMC/Soluplus mixture 
through two consecutive heating-cooling-heating cycles. Obviously, both three-dimensional FTIR spectral contour maps obtained from 
first- and second-heating runs were similar, due to the formation of IMC/Soluplus ASD system already prepared after solvent evapora-
tion. The IR peaks at 1735 (1734) and 1635 (1636) cm-1 were assigned to the Soluplus, while the IR peaks at 1682 and 1594 cm-1 were 
corresponded to the amorphous IMC, respectively, suggesting the amorphous IMC being existed within the IMC/Soluplus ASD system. 
Once the amorphous IMC was formed in the IMC/Soluplus ASD system, there was less change in the three-dimensional FTIR spectral 
contour map for this solid dispersion after repeating heating-cooling runs.

Figure 6:  Comparisons of FTIR spectra of γ-IMC/Soluplus physical mixture with the same weight 
ratio at different heating or cooling temperatures via alternate heating/cooling cycles.
 Key: a, at 30°C; b, at 250°C; c, cooled to 30°C; d, re-heating to 250°C.

Figure 7:  Three-dimensional FTIR plot of acetone-evaporated γ-IMC/Soluplus physical mixture with the same 
weight ratio as a function of temperature by DSC-FTIR combined system via alternate heating/cooling cycles. 
Key: A, first-heating process; B, second-heating process
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