

## Therapeutic Interior Design for Lung Disease Patients: Optimizing Built Environment for Respiratory Health and Recovery

Akshara Jain<sup>1</sup> and Alok S Shah<sup>2\*</sup>

<sup>1</sup>Bombay Scottish School Mahim, Mumbai, India

<sup>2</sup>Pulmonary Department, University of Chicago, USA

**\*Corresponding Author:** Alok S Shah, Pulmonary Department, University of Chicago, USA.

**Received:** January 07, 2026; **Published:** January 21, 2026

### Abstract

The built environment plays a critical yet underappreciated role in respiratory health outcomes for patients with lung diseases. This literature review examines the intersection of interior design strategies, indoor air quality management, and clinical outcomes for patients with chronic obstructive pulmonary disease (COPD), asthma, and other respiratory conditions. Drawing from 40 peer-reviewed studies spanning healthcare architecture, environmental engineering, and pulmonary medicine, this review synthesizes evidence demonstrating that strategic interior design interventions can significantly reduce hospital length of stay, improve pulmonary function, and enhance rehabilitation effectiveness. Key findings indicate that high-efficiency particulate air (HEPA) filtration reduces moderate COPD exacerbations by 68%, optimized ventilation systems can decrease airborne pathogen exposure by up to 62%, and biophilic design elements contribute to measurable stress reduction and accelerated recovery. The review proposes an integrated framework for respiratory-focused healthcare facility design that balances infection control, energy efficiency, and patient comfort. These findings have significant implications for healthcare architects, facility managers, and clinicians seeking to optimize therapeutic environments for lung disease patients.

**Keywords:** Indoor Air Quality; Therapeutic Design; COPD; Respiratory Health; Hospital Design; Ventilation; Pulmonary Rehabilitation

### Introduction

The relationship between the built environment and human health has been recognized since antiquity, yet the specific impact of interior design on respiratory patients remains insufficiently addressed in contemporary healthcare facility planning. Florence Nightingale articulated this connection in her foundational nursing text, stating that the first canon of nursing is “to keep the air he breathes as pure as the external air, without chilling him” [1]. Despite this longstanding awareness, modern healthcare facilities often prioritize infection control protocols over holistic respiratory wellness, creating environments that may inadvertently impede recovery for patients with compromised lung function.

Indoor air quality represents a particularly critical concern for respiratory patients, as concentrations of pollutants in indoor environments can be 5 to 100 times higher than outdoor levels [2]. This disparity stems from multiple internal sources including HVAC



**Figure 1:** Key findings - interior design impact on respiratory health.

systems, building materials, cleaning products, and human activities that continuously introduce contaminants into enclosed spaces [1]. For patients with COPD, asthma, or other chronic lung conditions, exposure to these pollutants can trigger exacerbations, prolong hospital stays, and impair rehabilitation outcomes. The economic burden is substantial, with nosocomial infections and suboptimal recovery trajectories contributing to elevated healthcare expenditures and extended bed-days [3].

The COVID-19 pandemic catalyzed renewed attention to indoor air quality and its role in disease transmission, prompting architects and healthcare planners to reconsider fundamental assumptions about building design strategies [4]. This paradigm shift presents an opportunity to integrate evidence-based design principles that address both infectious disease control and chronic respiratory disease management. The convergence of advances in smart building technologies, real-time environmental monitoring, and computational fluid dynamics modeling enables the creation of adaptive therapeutic environments that respond dynamically to patient needs and environmental conditions [5].

This review aims to synthesize current evidence regarding the impact of interior design on respiratory health outcomes, identify effective design interventions for lung disease patients, and propose an integrated framework for respiratory-focused healthcare facility design. The analysis draws from peer-reviewed literature spanning healthcare architecture, environmental engineering, pulmonary medicine, and building science to provide a comprehensive understanding of how the built environment can be optimized as a therapeutic intervention for respiratory patients.

## Methodology

This literature review employed a systematic approach to identify, evaluate, and synthesize relevant research on interior design factors affecting respiratory health in healthcare settings. Database searches were conducted across SCOPUS, PubMed, and Web of Science using search terms combining indoor air quality, hospital design, respiratory health, COPD, ventilation systems, and therapeutic architecture. The initial search yielded 483 potentially relevant articles published between 2008 and 2024, from which 40 studies meeting inclusion criteria were selected for detailed analysis.

Inclusion criteria required studies to address at least one of three primary outcomes: indoor air quality parameters in healthcare settings, clinical respiratory outcomes related to environmental factors, or design interventions with documented health impacts. Studies were excluded if they focused exclusively on outdoor air pollution, lacked empirical data, or addressed non-respiratory health outcomes. Quality assessment followed established protocols for systematic reviews, with particular attention to study design, sample size, measurement methodology, and potential sources of bias.

The analysis framework organized findings into four interconnected domains: ventilation and air distribution systems, material selection and surface treatments, spatial design and layout optimization, and technology-enabled environmental control. This structure reflects the hierarchical relationship between building infrastructure decisions and their downstream effects on indoor environmental quality and patient outcomes.

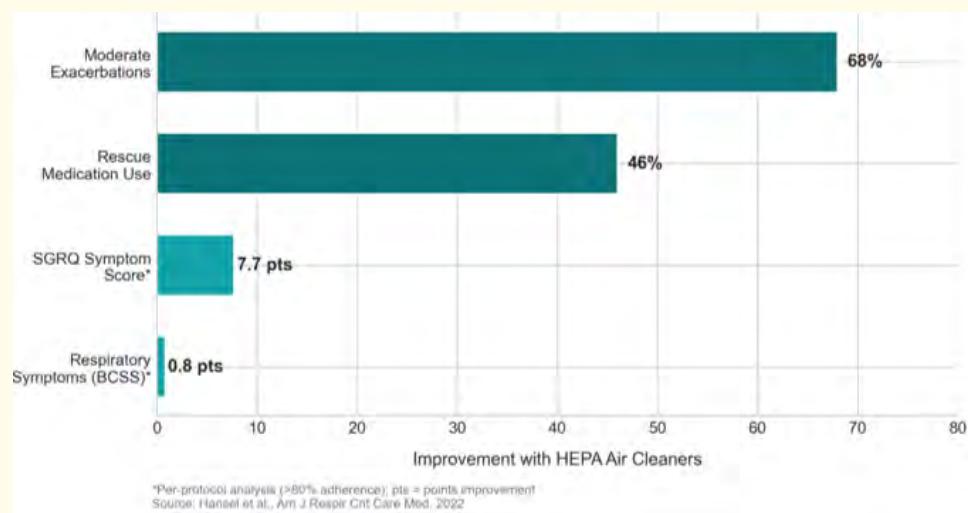
### Indoor air quality and respiratory health outcomes

#### The burden of indoor air pollution on lung disease patients

Indoor air pollution represents a significant and modifiable risk factor for respiratory morbidity in healthcare environments. A noticeable share of 4.1% of global deaths in recent decades has been attributed to severely poor indoor air quality, with healthcare facilities particularly prone to elevated contamination levels due to the concentration of vulnerable patients and medical procedures [3]. Patients with chronic respiratory conditions demonstrate heightened sensitivity to indoor pollutants, with exposure triggering acute exacerbations that prolong hospitalization and impair recovery trajectories.

The GERIE study, a multicenter investigation across seven European countries, provided compelling evidence linking indoor air quality to respiratory outcomes in vulnerable populations [6]. Among 600 elderly residents in 50 nursing homes, elevated levels of particulate matter with aerodynamic diameter less than 0.1 micrometers (PM0.1) were associated with an eight-fold increase in obstructive lung function abnormalities (OR 8.16, 95% CI 2.24-29.3). Nitrogen dioxide exposure correlated with increased breathlessness (OR 1.58, 95% CI 1.15-2.20) and persistent cough (OR 1.56, 95% CI 1.03-2.41). Critically, these adverse effects occurred even when pollutant concentrations remained below existing regulatory standards, suggesting that current guidelines may inadequately protect respiratory-compromised individuals.

Ibrahim., *et al.* [2] categorized the determinants of hospital indoor air quality into four domains: contextual factors related to building location and outdoor air quality, building design elements including ventilation systems and materials, operational management practices, and occupant-related variables such as patient acuity and medical procedures. Their mini-review emphasized that these factors interact dynamically, creating complex exposure scenarios that cannot be adequately addressed through single-intervention approaches. Effective indoor air quality management requires integrated strategies addressing multiple contamination sources simultaneously.




**Figure 2:** Four interconnected domains affecting hospital indoor air quality for respiratory patients. Adapted from Ibrahim., *et al.* [2].

### Evidence from clinical intervention studies

The CLEAN AIR study represents a landmark randomized controlled trial demonstrating the clinical benefits of air quality improvement for COPD patients [7]. Hansel, *et al.* randomized 116 former smokers with moderate-to-severe COPD to receive either active HEPA air cleaners or sham devices, with six-month follow-up for respiratory outcomes. The intervention group demonstrated significantly greater reduction in respiratory symptoms as measured by the Breathlessness, Cough, and Sputum Scale ( $\beta$  -0.8, 95% CI -1.5 to -0.1) and substantially lower rates of moderate exacerbations (incidence rate ratio 0.32, 95% CI 0.12-0.91). Rescue medication use decreased by 46% in the active filter group compared to controls.

Per-protocol analysis among participants with greater than 80% adherence revealed even more pronounced benefits, with clinically meaningful improvements in St. George's Respiratory Questionnaire scores ( $\beta$  -4.76, 95% CI -9.2 to -0.34) and six-minute walk distance. Notably, treatment effects were most pronounced among participants spending greater time indoors, highlighting the importance of indoor air quality for patients with limited mobility or those receiving home-based care. These findings provide direct evidence that environmental interventions can achieve clinically significant improvements in respiratory outcomes comparable to pharmacological interventions [19].



**Figure 3:** Results from the CLEAN AIR randomized controlled trial showing improvements in COPD patient outcomes with HEPA air filtration.

### Chemical pollutants and building materials

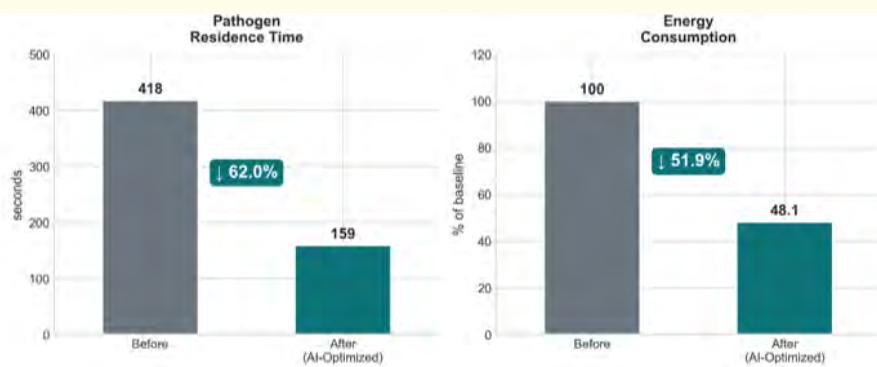
The systematic review by Gola, *et al.* [1] examined chemical pollution in inpatient environments, identifying four macroareas of contamination sources: outdoor air and microclimatic factors, management activities, design factors, and human presence. Building and finishing materials emerged as significant contributors to volatile organic compound (VOC) emissions, with concentrations influenced by material age, temperature, humidity, and ventilation rates. Common hospital materials including vinyl flooring, particleboard furniture, and synthetic textiles can release formaldehyde, benzene, and other respiratory irritants for years following installation.

Cleaning and disinfection protocols, while essential for infection control, paradoxically contribute to indoor air contamination through emission of oxidizing agents, quaternary ammonium compounds, and aerosols [1]. This creates a tension between infection prevention

and respiratory wellness that requires careful balancing through product selection, application methods, and enhanced ventilation during and following cleaning activities [20]. Low-emission alternatives for both building materials and cleaning products exist but are not consistently specified in healthcare facility design and operations.

### Ventilation systems and airborne pathogen control

#### Mechanical versus natural ventilation strategies


Ventilation represents the primary engineering control for managing indoor air quality and reducing airborne pathogen transmission in healthcare settings. Nourozi, *et al.* [3] conducted a systematic review of ventilation solutions for hospital wards, comparing the performance of mechanical, natural, and hybrid systems for pathogen removal while maintaining thermal comfort. Their analysis demonstrated that mechanical ventilation offers superior control and consistency but at significantly higher energy costs, while natural ventilation provides cost-effective high air change rates but lacks the precision required for isolation environments.

The optimal ventilation strategy depends on specific clinical requirements, building characteristics, and climate conditions. Negative pressure isolation rooms require mechanical systems capable of maintaining greater exhaust than supply airflow to prevent pathogen migration to adjacent spaces [3]. General medical-surgical wards may benefit from hybrid approaches that combine mechanical baseline ventilation with natural ventilation augmentation during favorable weather conditions. The review emphasized that building orientation, height, and climate zone significantly influence natural ventilation effectiveness, requiring site-specific analysis during facility design.

#### Advanced air cleaning technologies

Jiang, *et al.* [5] developed an AI-driven ventilation system integrating building information modeling (BIM), adaptive control algorithms, and computational fluid dynamics (CFD) to optimize hospital environments dynamically. Their framework achieved remarkable performance improvements, reducing airborne pathogen exposure by 61.96% (residence time reduced from 418 seconds to 159 seconds) while simultaneously achieving 51.85% energy savings through optimized airflow velocities. CFD-validated architectural interventions including 1.8-meter partitions and calibrated pressure differentials at return vents contributed to enhanced aerosol containment.

Complementary air cleaning technologies including ultraviolet germicidal irradiation (UVGI), photocatalytic oxidation, and bipolar ionization can further reduce airborne contaminant concentrations when integrated with ventilation systems [3]. High-efficiency particulate air (HEPA) filters with minimum efficiency reporting value (MERV) ratings of 13 or higher capture 99.97% of particles 0.3 micrometers and larger, including most respiratory pathogens. The combination of adequate air change rates with supplementary air cleaning provides defense-in-depth protection for immunocompromised respiratory patients.



**Figure 4:** Performance improvements achieved through AI-driven ventilation optimization, demonstrating significant reductions in pathogen residence time and energy consumption [5].

### Real-time monitoring and adaptive control

The integration of Internet of Things (IoT) sensor networks enables continuous monitoring of indoor environmental parameters and automated adjustment of ventilation systems in response to changing conditions [8]. Marques., *et al.* reviewed IoT architectures for healthcare environments, identifying applications including real-time air quality assessment, temperature and humidity monitoring, and occupancy-based ventilation control. These systems can detect elevated carbon dioxide or particulate matter concentrations and automatically increase ventilation rates, providing responsive environmental management without requiring manual intervention.

Smart healthcare environments leverage sensor-enabled digital twins to model indoor conditions and predict optimal control strategies [9]. These virtual representations of physical spaces enable simulation of different ventilation scenarios, identification of potential contamination hotspots, and optimization of energy consumption while maintaining air quality targets. Wearable devices for respiratory patients can integrate with building management systems to provide personalized environmental conditions based on individual health status and symptom patterns [10].

### Therapeutic design principles for respiratory rehabilitation

#### The physical environment and rehabilitation outcomes

Pulmonary rehabilitation plays an essential role in the management of symptomatic COPD patients by breaking the vicious cycle of dyspnea, decreased activity, deconditioning, and isolation [11]. Corhay., *et al.* demonstrated that comprehensive pulmonary rehabilitation programs decrease symptoms including dyspnea and fatigue, improve exercise tolerance and health-related quality of life, reduce healthcare utilization including bed-days, and increase daily physical activity. The COVID-19 pandemic presented both challenges and opportunities for pulmonary rehabilitation delivery, highlighting the importance of adaptable facility design [21]. The physical environment in which rehabilitation occurs significantly influences patient motivation, compliance, and treatment effectiveness.

Environmental design considerations for pulmonary rehabilitation spaces include adequate floor area for exercise equipment and patient movement, appropriate ceiling heights to prevent claustrophobic perceptions, visual access to nature through windows or representational imagery, and acoustic design that enables clear communication between therapists and patients while minimizing noise-induced stress [22]. Sobretodo and Alvarado [12] applied healing architecture principles to pulmonary hospital design, integrating natural light optimization, indoor plant incorporation, and spatial configurations that support both group therapy and individual treatment modalities. The application of therapeutic architectural principles in rehabilitation facility design has demonstrated measurable improvements in patient outcomes [23].

#### Biophilic design and stress reduction

Exposure to natural elements reduces physiological stress responses, lowers blood pressure, and accelerates recovery from illness through mechanisms that remain incompletely understood but are consistently replicated across research settings [13]. For respiratory patients, stress reduction carries additional importance as psychological distress can trigger bronchospasm, hyperventilation, and other phenomena that exacerbate underlying pulmonary conditions. Biophilic design principles incorporating natural materials, daylight, vegetation, and nature views create therapeutic environments that support healing beyond the direct effects of air quality improvement.

Hu and Roberts [13] conducted a scoping review examining connections between public health and the built environment, identifying four critical health factors in designed spaces: physical, physiological, biological, and psychological. Their analysis demonstrated that proper integration of public health principles with architectural design can prevent infectious disease outbreaks and improve living conditions, with particular relevance for respiratory care facilities. The historical divergence between these disciplines has resulted in healthcare environments that prioritize infection control while neglecting psychological and physiological dimensions of healing.

### **Spatial design for optimal air circulation**

Room configuration significantly influences air distribution patterns, contaminant removal efficiency, and thermal comfort for occupants. Computational fluid dynamics simulations demonstrate that furniture arrangement, partition placement, and supply/return vent positioning create complex airflow patterns that determine pollutant concentrations at breathing zone height [5]. Suboptimal layouts can generate recirculation zones where contaminants accumulate, stagnant regions with inadequate air exchange, and draft patterns that cause thermal discomfort and respiratory irritation.

Evidence-based design guidelines recommend positioning patient beds to maximize exposure to conditioned air supply while minimizing exposure to exhaled air from other patients in multi-bed configurations [3]. Single-patient rooms eliminate cross-contamination risks between patients but require higher ventilation rates per bed to achieve equivalent air quality. Human factors principles emphasize creating spaces that support both patient care and staff effectiveness in respiratory treatment settings [24]. The balance between single and multi-patient room configurations involves trade-offs between infection control, operational efficiency, patient privacy, and construction costs that must be evaluated in context of specific patient populations and facility constraints.

### **Material selection and surface treatments**

#### **Low-emission building materials**

Selection of building materials with low volatile organic compound emissions represents a foundational strategy for protecting respiratory health in healthcare environments. Gola, *et al.* [1] identified finishing materials including flooring, wall coverings, ceiling systems, and furniture as significant sources of formaldehyde, toluene, and other respiratory irritants. Material emissions are highest immediately following installation but continue at lower rates for years, creating chronic low-level exposures that may trigger symptoms in sensitized individuals.

Green building certification programs including LEED and WELL Building Standard establish requirements for low-emission materials in healthcare construction projects [14]. These programs specify maximum emission rates for different product categories and require third-party verification of manufacturer claims. However, compliance with certification requirements does not guarantee absence of respiratory effects, as individual sensitivity varies widely and cumulative exposures from multiple sources may exceed thresholds for symptom provocation.

#### **Antimicrobial surfaces and infection prevention**

Surface contamination contributes to healthcare-associated infection transmission through hand contact with contaminated surfaces followed by touching of face, mucous membranes, or medical devices [15]. Antimicrobial surface treatments including copper alloys, silver-containing coatings, and photocatalytic materials can reduce surface bioburden and interrupt transmission pathways. For respiratory patients, reduction of surface-mediated pathogen transmission complements airborne infection control measures to provide comprehensive protection.

The selection of antimicrobial surfaces involves consideration of efficacy against target pathogens, durability under cleaning and disinfection protocols, compatibility with healthcare operations, and potential for adverse effects including promotion of antimicrobial resistance [1]. Copper surfaces demonstrate broad-spectrum antimicrobial activity through contact killing mechanisms that do not promote resistance development, but higher initial costs limit widespread adoption. Novel materials incorporating antimicrobial nanoparticles offer promising performance but require additional safety evaluation for healthcare applications.

### Technology integration and smart healthcare environments

#### Sensor networks and environmental monitoring

Contemporary healthcare facilities increasingly incorporate networked sensors for continuous monitoring of indoor environmental parameters including temperature, relative humidity, carbon dioxide, particulate matter, and volatile organic compounds [16]. Rodrigues, *et al.* reviewed physiological and behavior monitoring systems for smart healthcare environments, demonstrating the feasibility of integrated platforms that combine environmental sensing with patient health monitoring to enable personalized care delivery.

Real-time environmental data enables identification of air quality excursions, correlation of environmental conditions with patient symptoms, and optimization of building system operations. Machine learning algorithms applied to sensor data can predict air quality degradation before it occurs, enabling preemptive ventilation adjustment to maintain healthy conditions [5]. Integration with electronic health records allows correlation of environmental exposures with clinical outcomes, generating evidence to refine design guidelines and operational protocols.

#### Digital twins and predictive modeling

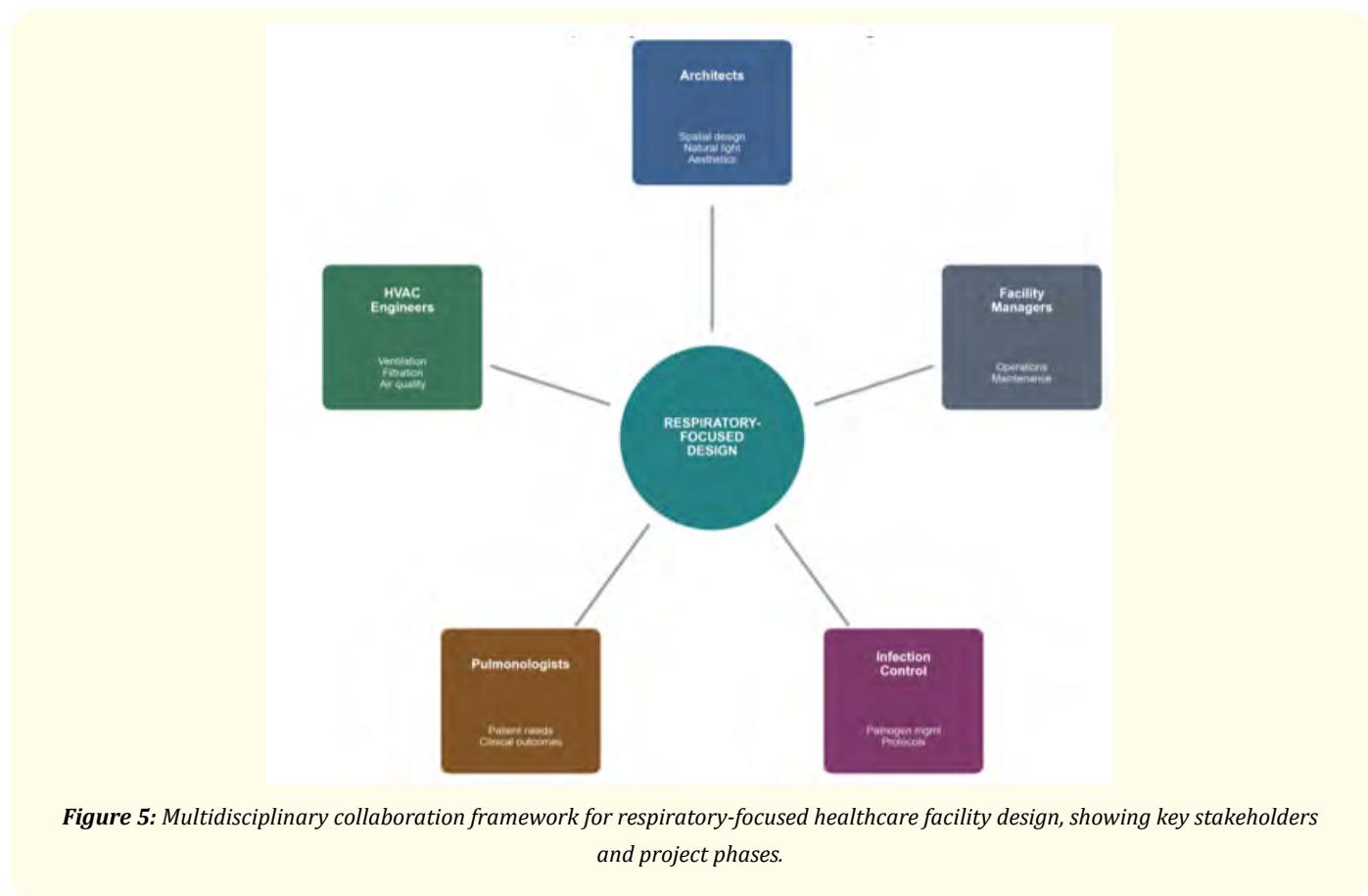
Digital twin technology creates virtual representations of physical facilities that mirror real-world conditions and enable simulation of alternative scenarios [9]. For healthcare environments, digital twins can model airflow patterns under different ventilation configurations, predict contamination dispersion following release events, and optimize energy consumption while maintaining air quality targets. These capabilities support both design decision-making and operational optimization throughout facility lifecycles.

The convergence of building information modeling, IoT sensor networks, and cloud computing platforms enables creation of responsive healthcare environments that adapt to changing conditions in real time. Jiang, *et al.* [5] demonstrated patient flow prediction capabilities that optimize spatial efficiency and reduce wait times while maintaining appropriate environmental conditions throughout facility zones. Facility management strategies that optimize healthcare environment performance are essential for maintaining conditions beneficial to respiratory patients [25]. Such integration of operational and environmental management represents the frontier of evidence-based healthcare facility design.

### Clinical implications and recommendations

#### Design guidelines for respiratory health

Based on the synthesized evidence, several design principles emerge as particularly important for healthcare facilities serving respiratory patients. First, ventilation systems should provide minimum air change rates of 6 to 12 air changes per hour depending on patient acuity, with HEPA filtration or equivalent air cleaning for spaces housing immunocompromised individuals [3]. Negative pressure capability should be available for isolation of patients with suspected or confirmed airborne infectious diseases.


Second, material specifications should require low VOC emission ratings for all finish materials, furniture, and equipment with third-party verification of manufacturer claims [1]. Material selections should consider not only initial emissions but durability, cleanability, and end-of-life disposal characteristics. Healthcare facilities should maintain inventories of installed materials to enable assessment of potential contamination sources when air quality problems arise.

Third, spatial design should optimize airflow patterns through careful positioning of supply and return vents, strategic placement of partitions, and arrangement of furniture to minimize recirculation zones and ensure adequate air exchange at patient breathing zones [5]. Computational fluid dynamics analysis should inform design development for complex spaces including operating rooms, intensive care units, and pulmonary rehabilitation areas.

### Multidisciplinary collaboration

Effective implementation of respiratory-focused design requires collaboration among architects, engineers, clinicians, infection preventionists, and facility managers throughout planning, design, construction, and operations phases [17]. Architects contribute expertise in spatial organization, natural light optimization, and aesthetic design that supports healing environments. Engineers provide technical knowledge of ventilation systems, building physics, and environmental control technologies. Clinicians articulate patient care requirements, workflow patterns, and clinical outcome priorities.

This multidisciplinary approach overcomes the traditional fragmentation of healthcare facility development, in which decisions are made sequentially by discipline-specific experts without adequate integration [13]. Integrated project delivery methods that engage all stakeholders from project inception can identify opportunities for synergistic design solutions while avoiding conflicts between competing requirements [26]. Post-occupancy evaluation provides feedback to inform continuous improvement and future project development.



**Figure 5:** Multidisciplinary collaboration framework for respiratory-focused healthcare facility design, showing key stakeholders and project phases.

### Limitations and Future Research Directions

This review acknowledges several limitations in the current evidence base. Many studies examining relationships between indoor environmental quality and respiratory outcomes are cross-sectional, limiting causal inference. Randomized controlled trials of design interventions remain rare due to practical and ethical constraints on manipulating healthcare environments. Outcome measures vary across studies, complicating synthesis and meta-analysis. Publication bias may overrepresent positive findings while underreporting null or negative results.

Future research should prioritize longitudinal studies tracking respiratory patient outcomes across facilities with documented differences in design characteristics [18]. Standardized measurement protocols for both environmental parameters and clinical outcomes would facilitate comparison across studies and meta-analytic synthesis. Economic analyses quantifying return on investment for advanced air quality management systems would support business case development for healthcare administrators. Implementation research examining barriers and facilitators to adoption of evidence-based design guidelines would accelerate translation of research findings into practice.

Emerging technologies including artificial intelligence, advanced sensors, and responsive building systems offer opportunities for personalized environmental control that adapts to individual patient needs in real time. Research should evaluate the clinical effectiveness of these approaches compared to conventional static environmental management. Long-term studies are needed to assess durability of design interventions and potential for adaptation or degradation over facility lifecycles.

### Conclusion

The built environment represents a modifiable determinant of respiratory health outcomes that deserves greater attention in healthcare facility planning and operations. This review demonstrates that strategic interior design interventions including advanced ventilation systems, low-emission materials, optimized spatial configurations, and technology-enabled environmental control can significantly improve clinical outcomes for patients with lung diseases. The CLEAN AIR study provides compelling evidence that air quality improvement alone can reduce COPD exacerbations by 68% and decrease rescue medication use by 46%, effects comparable to pharmacological interventions.

Translating these findings into practice requires paradigm shifts in healthcare facility development, moving from single-objective optimization focused on infection control toward integrated approaches that simultaneously address air quality, thermal comfort, psychological wellness, and operational efficiency. Multidisciplinary collaboration among architects, engineers, clinicians, and facility managers is essential to navigate the complexity of respiratory-focused design while respecting practical constraints of healthcare operations.

The convergence of smart building technologies, real-time environmental monitoring, and computational modeling enables creation of adaptive therapeutic environments that respond dynamically to patient needs and environmental conditions. As healthcare systems worldwide confront increasing burdens of chronic respiratory disease, investment in evidence-based facility design offers a sustainable strategy for improving patient outcomes while reducing healthcare costs. The built environment is not merely a container for clinical care but an active therapeutic intervention that shapes the trajectory of respiratory health and recovery.

### Bibliography

1. M Gola., *et al.* "Indoor air quality in inpatient environments: a systematic review on factors that influence chemical pollution in inpatient wards". *Journal of Healthcare Engineering* (2019): 8358306.
2. F Ibrahim., *et al.* "Hospital indoor air quality and its relationships with building design, building operation, and occupant-related factors: A mini-review". *Frontiers in Public Health* 10 (2022): 1067764.
3. B Nourozi., *et al.* "A systematic review of ventilation solutions for hospital wards: Addressing cross-infection and patient safety". *Building and Environment* 247 (2024): 110954.
4. NA Megahed and EM Ghoneim. "Indoor air quality: rethinking rules of building design strategies in post-pandemic architecture". *Environmental Research* 193 (2021): 110471.

5. F Jiang, *et al.* "Hospital ventilation optimization: balancing thermal comfort and energy efficiency in nonlinear building dynamics". *Buildings* 15.18 (2024): 3267.
6. M Bentayeb., *et al.* "Indoor air quality, ventilation and respiratory health in elderly residents living in nursing homes in Europe". *European Respiratory Journal* 45.5 (2015): 1228-1238.
7. NN Hansel, *et al.* "Randomized clinical trial of air cleaners to improve indoor air quality and chronic obstructive pulmonary disease health: results of the CLEAN AIR study". *American Journal of Respiratory and Critical Care Medicine* 205.4 (2022): 421-430.
8. G Marques., *et al.* "Internet of things architectures, technologies, applications, challenges, and future directions for enhanced living environments and healthcare systems: a review". *Electronics* 8.10 (2019): 1081.
9. Sasan Adib., *et al.* "Enhancing healthcare through sensor-enabled digital twins in smart environments: a comprehensive analysis". *Sensors* 24.9 (2024): 2793.
10. K Guk., *et al.* "Evolution of wearable devices with real-time disease monitoring for personalized healthcare". *Nanomaterials* 9.6 (2019): 813.
11. J-L Corhay, *et al.* "Pulmonary rehabilitation and COPD: providing patients a good environment for optimizing therapy". *International Journal of Chronic Obstructive Pulmonary Disease* 9 (2014): 27-39.
12. AJ Sobretodo and RY Alvarado. "Integrating healing architecture as design approach for pulmonary hospitals in Bacolod city". *International Multidisciplinary Journal of Research for Innovation, Sustainability, and Excellence* 1.11 (2023).
13. M Hu and JD Roberts. "Connections and divergence between public health and built environment-a scoping review". *Urban Science* 4.1 (2020): 12.
14. H Lee., *et al.* "Template for the Jurnal Teknologi: Green building design principles for healthcare facilities". *International Journal of Built Environment Studies* 8.1 (2021): 23-45.
15. Chapter 28. "The Impact of Facility Design on Patient Safety". In *Patient Safety and Quality: An Evidence-Based Handbook for Nurses*, Agency for Healthcare Research and Quality (2008).
16. MJ Rodrigues., *et al.* "Physiological and behavior monitoring systems for smart healthcare environments: a review". *Sensors* 20.8 (2020): 2186.
17. Minjung Cho. "Evaluating therapeutic healthcare environmental criteria: architectural designers' perspectives". *International Journal of Environmental Research and Public Health* 20.2 (2023): 1540.
18. Yu Tian. "A review on factors related to patient comfort experience in hospitals". *Journal of Health Population and Nutrition* 42.1 (2023).
19. GM Verleden and W Janssens. "Pulmonary rehabilitation and physical interventions". *European Respiratory Review* 32.168 (2023): 220222.
20. "Checklist for healthy materials in healthcare building design". *Green Building Review* 15.3 (2024): 45-62.
21. MA Siddiq. "COVID-19 pandemic and pulmonary rehabilitation: challenges and opportunities". *Turkish Journal of Physical Medicine and Rehabilitation* 66.4 (2020): 480-486.
22. "Environmental design of the rehabilitation center: addressing urgent needs for specialized spaces". *Healthcare Design Journal* 28 (2023): 112-128.

23. A Aliyu., et al. "Application of therapeutic architectural principles in the design of drug rehabilitation centre for Nigeria". *International Journal of Research and Innovation in Applied Science* 7.12 (2022): 14-20.
24. "Human factors in healthcare environment design: a comprehensive analysis". *Human Factors* 66.8 (2024): e51150.
25. "Facility management strategies for optimal healthcare environment performance". *Facilities* 40.2 (2022): 112-128.
26. SIA dos Santos Baptista. "Indoor environmental quality in healthcare units: an evidence-based approach". Ph.D. dissertation, University of Porto, Porto, Portugal (2023).

**Volume 15 Issue 2 February 2026**

**©All rights reserved by Akshara Jain and Alok S Shah.**