

EC PULMONOLOGY AND RESPIRATORY MEDICINE Review Article

The Chemistry Underlying Cystic Fibrosis Therapeutics

Mehar Kaur Minhas1 and Alok S Shah2*

¹Oberoi International School, Mumbai, India

²Pulmonary Department, University of Chicago, USA

*Corresponding Author: Alok S Shah, Pulmonary Department, University of Chicago, USA.

Received: September 26, 2025; Published: November 04, 2025

Abstract

Cystic fibrosis (CF) is a life-threatening genetic disorder affecting approximately 70,000 people worldwide, caused by mutations in the CFTR gene that lead to defective chloride ion transport across epithelial membranes. This literature review examines the molecular chemistry underlying CF pathophysiology and the development of targeted therapeutics that address the root causes of the disease. Recent advances in structural biology have revealed the detailed architecture of the CFTR protein, enabling the rational design of small-molecule modulators like ivacaftor, lumacaftor, and elexacaftor that directly target protein defects. These CFTR modulators represent a paradigm shift from symptom management to precision medicine approaches that restore protein function. Emerging therapeutic strategies include read-through agents for nonsense mutations, proteostasis modulators, and novel targets like the epithelial sodium channel. Gene therapy approaches continue to show promise despite delivery challenges. The molecular understanding of CFTR structure-function relationships has transformed CF treatment, with combination therapies now providing substantial clinical benefits for many patients. This review synthesizes current knowledge of the chemical mechanisms underlying CF therapeutics and identifies future directions for drug development.

Keywords: Cystic Fibrosis (CF); CFTR Gene; Cystic Fibrosis Transmembrane Conductance Regulator (CFTR)

Introduction

Cystic fibrosis stands as one of the most common lethal genetic disorders in populations of Northern European descent, affecting approximately one in every 2,500 newborns [19]. The disease results from mutations in a single gene encoding the cystic fibrosis transmembrane conductance regulator (CFTR), a protein that functions as a chloride channel in epithelial cells [20]. Unlike many genetic diseases where the molecular basis remained unclear for decades, CF research has benefited from early identification of the causative gene in 1989, enabling focused efforts to understand the protein's structure and develop targeted therapies.

The CFTR protein belongs to the ATP-binding cassette (ABC) transporter family but uniquely functions as an ion channel rather than a transporter [20]. This distinction is crucial for understanding both the disease mechanism and therapeutic approaches. While other ABC proteins use ATP hydrolysis to transport substrates against concentration gradients, CFTR conducts chloride ions down their electrochemical gradient, making it essential for maintaining proper salt and water balance across epithelial surfaces.

The clinical manifestations of CF arise from the disruption of normal chloride transport, leading to thick, dehydrated mucus that accumulates in the lungs and digestive system. This creates an environment conducive to bacterial infections, chronic inflammation, and progressive organ damage. Traditional CF management focused on treating these secondary effects through antibiotics, airway clearance techniques, and nutritional support. However, the past decade has witnessed a remarkable transformation in CF therapeutics, driven by detailed molecular understanding of CFTR structure and function.

This review examines the chemistry underlying this therapeutic revolution, from the structural biology that revealed CFTR's architecture to the rational design of small-molecule modulators that restore protein function. The focus is on how molecular insights have enabled the development of precision medicines that target the root causes of CF rather than merely managing symptoms.

CFTR protein structure and function

Molecular architecture

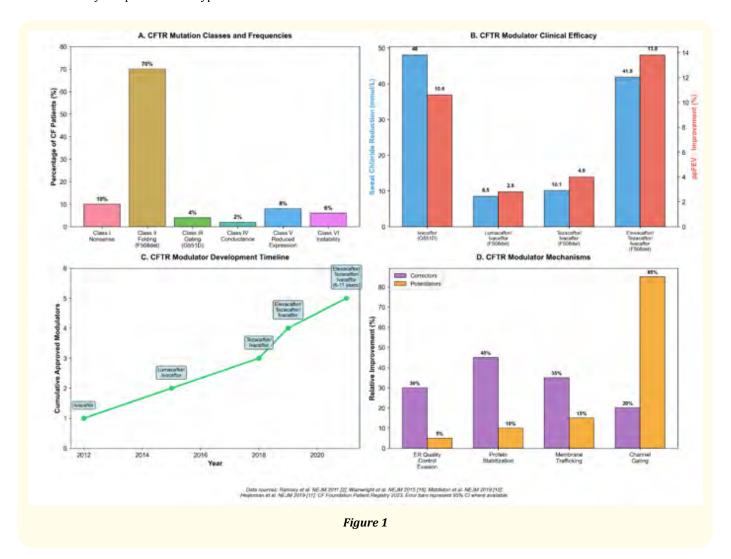
The breakthrough in understanding CFTR structure came with the determination of high-resolution cryo-electron microscopy structures of human CFTR in different conformational states [1]. These studies revealed that CFTR consists of two transmembrane domains (TMDs) that form the ion permeation pathway, two nucleotide-binding domains (NBDs) that bind and hydrolyze ATP, and a unique regulatory (R) domain that must be phosphorylated for channel activity.

The structure of dephosphorylated, ATP-free CFTR shows the protein in a closed conformation where the NBDs are separated by approximately 20 Å, and the R domain is positioned to prevent NBD dimerization [1]. This structural arrangement explains why CFTR requires phosphorylation by protein kinase A (PKA) to become active - the R domain must be modified to allow the conformational changes necessary for channel opening.

In contrast, the structure of phosphorylated, ATP-bound CFTR reveals a dramatically different conformation where the NBDs form a closed dimer with ATP molecules bound at their interface [6]. This represents the pre-hydrolytic state that corresponds to the open channel. The structural comparison between these two states illustrates the large-scale conformational changes that occur during CFTR gating and provides a molecular framework for understanding how ATP binding drives channel opening.

Gating mechanism and ion permeation

Recent single-molecule studies have provided unprecedented insights into the relationship between CFTR's structural dynamics and its function as a chloride channel [3]. These experiments demonstrated that ATP-dependent NBD dimerization is necessary but not sufficient for channel opening. The protein exhibits an allosteric gating mechanism where conformational changes within the NBD-dimerized channel, governed by ATP hydrolysis, regulate chloride conductance.


The ion permeation pathway consists of a large cytosolic vestibule, a narrow transmembrane tunnel, and a selectivity filter near the extracellular surface [7]. Structural studies have identified the selectivity filter as a constriction formed by residues G103, R334, F337, T338, and Y914, which coordinate dehydrated chloride ions during transport [7]. This molecular-level understanding of ion selectivity has important implications for drug design, as modifications to these regions could affect both normal function and pharmacological modulation.

Molecular dynamics simulations have complemented structural studies by revealing the dynamic aspects of chloride permeation [4]. These computational studies showed that chloride ions enter an intracellular vestibule and bind to cytosolic residue clusters but are normally trapped by a hydrophobic bottleneck. Under appropriate conditions, spontaneous chloride permeation occurs when the pore undergoes "wetting" of the hydrophobic constriction gate, allowing ion passage.

F508del mutation and protein misfolding

The most common CF-causing mutation, F508del, affects approximately 70% of CF patients and serves as a paradigm for understanding how mutations disrupt CFTR function [19]. This deletion removes a single phenylalanine residue from NBD1, causing the protein to misfold during biosynthesis in the endoplasmic reticulum. The misfolded protein is recognized by cellular quality control mechanisms and degraded rather than being trafficked to the cell surface.

Structural studies have revealed that the F508del mutation destabilizes the interface between NBD1 and the first transmembrane domain, leading to improper folding of the entire protein [5]. This understanding has been crucial for developing corrector molecules that can stabilize the mutant protein and promote its trafficking to the cell surface, where it can function as a chloride channel, albeit with reduced activity compared to wild-type CFTR.

Small molecule CFTR modulators

Potentiators: Enhancing channel gating

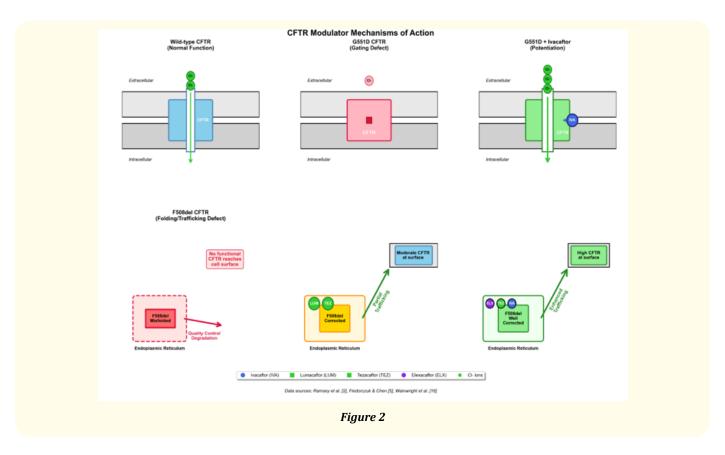
The development of ivacaftor (VX-770) represents a landmark achievement in CF therapeutics, demonstrating that small molecules can directly enhance CFTR function [2]. Ivacaftor acts as a potentiator, increasing the time that activated CFTR channels remain open at the cell surface. The drug was initially developed for patients with the G551D mutation, which produces CFTR protein that reaches the cell surface but has defective gating.

The pivotal clinical trial of ivacaftor in G551D patients demonstrated remarkable efficacy [2]. Treatment resulted in a 10.6 percentage point improvement in lung function, a 48 mmol/L reduction in sweat chloride (indicating restored CFTR activity), and a 55% reduction in pulmonary exacerbations. These results provided compelling evidence that directly targeting CFTR dysfunction could produce substantial clinical benefits.

Mechanistic studies have revealed that ivacaftor binds to multiple sites on CFTR, including regions in intracellular loop 4 and transmembrane helix 8 [8]. The drug's extremely high potency, with full potentiation occurring at picomolar concentrations, suggests it acts through multiple sequential binding steps. Importantly, ivacaftor's effects are temperature-independent, ensuring consistent activity across physiological conditions [9].

Correctors: Restoring protein trafficking

While potentiators enhance the function of CFTR that reaches the cell surface, correctors address the trafficking defects that prevent mutant proteins from reaching their functional destination. Lumacaftor (VX-809) was the first corrector to reach clinical use, designed specifically to help F508del-CFTR fold properly and escape endoplasmic reticulum quality control.


Structural studies have revealed that lumacaftor binds to a hydrophobic pocket in transmembrane domain 1, bridging four adjacent helices that are normally unstable in F508del-CFTR [5]. This binding stabilizes the early-stage folding of TMD1, preventing the misfolding that normally leads to protein degradation. The corrector essentially acts as a molecular chaperone, helping the mutant protein achieve a conformation that can pass cellular quality control checkpoints.

However, lumacaftor alone provides only modest clinical benefits, leading to the development of combination therapies. The combination of lumacaftor with ivacaftor (marketed as Orkambi) showed improved efficacy compared to either drug alone, but the benefits remained limited [16]. This led to the development of more potent correctors and ultimately to more advanced combination approaches.

Advanced combination strategies

Recent developments in CFTR modulator chemistry have focused on creating more effective combinations that address multiple aspects of protein dysfunction simultaneously. These approaches recognize that F508del-CFTR has complex folding defects that may require multiple correctors working through different mechanisms to achieve optimal therapeutic benefit.

The success of combination approaches demonstrates the importance of understanding the molecular basis of CFTR dysfunction. By targeting different aspects of protein folding, trafficking, and gating simultaneously, these therapies can achieve greater restoration of CFTR function than single agents alone.

Emerging therapeutic strategies

Read-through agents for nonsense mutations

Approximately 10% of CF patients have nonsense mutations that introduce premature stop codons, leading to truncated, nonfunctional CFTR proteins [12]. Ataluren (PTC124) was developed as a read-through agent designed to allow ribosomes to ignore these premature stop codons and produce full-length CFTR protein.

Early studies in children with nonsense mutations showed promising results, with ataluren inducing CFTR protein expression and improving chloride transport in approximately 50% of patients [12]. The drug significantly increased the proportion of nasal epithelial cells expressing full-length CFTR protein, providing direct evidence of its mechanism of action.

However, larger phase 3 trials yielded mixed results [13]. While ataluren showed activity in some patients, the overall clinical benefits were modest and appeared to depend on concurrent medications. Patients taking chronic inhaled aminoglycosides showed reduced responses, possibly due to drug interactions that interfere with the read-through mechanism. These results highlight the challenges of developing therapies for rare mutation classes and the importance of understanding drug interactions.

Alternative targets: ENaC modulation

An innovative approach to CF therapy involves targeting the epithelial sodium channel (ENaC), which becomes hyperactive in CF airways and contributes to airway dehydration [14]. SPX-101 is a peptide therapeutic designed to mimic the natural regulation of ENaC by the protein SPLUNC1, which is dysfunctional in the acidic environment of CF airways.

SPX-101 works by binding selectively to ENaC and promoting internalization of the channel subunits, thereby reducing sodium absorption and improving airway hydration [14]. In preclinical studies, the peptide dramatically improved survival in mouse models of CF lung disease and restored mucociliary clearance. Unlike small-molecule ENaC inhibitors like amiloride, SPX-101 provides durable effects without significant systemic absorption, avoiding the kidney-related side effects that limited earlier approaches.

Phase 1 clinical trials demonstrated that SPX-101 is well-tolerated with minimal systemic exposure when administered by inhalation [15]. This approach represents an important alternative strategy that could benefit all CF patients regardless of their specific CFTR mutations, since ENaC hyperactivation is a universal feature of CF pathophysiology.

Proteostasis modulators

Another emerging strategy involves modulating the cellular protein quality control machinery to enhance CFTR folding and stability. Studies have shown that reducing the activity of certain molecular chaperones can improve F508del-CFTR folding [17]. For example, partial knockdown of Aha1, a co-chaperone of Hsp90, significantly increased the folding and surface expression of F508del-CFTR.

Similarly, histone deacetylase 6 (HDAC6) inhibitors have shown promise by addressing multiple cellular defects in CF [18]. These compounds increase tubulin acetylation, restore normal cholesterol localization, and reduce inflammatory signaling. The approach targets the broader cellular dysfunction that occurs in CF rather than focusing solely on CFTR correction.

Gene therapy approaches

Viral vector strategies

Gene therapy for CF has been pursued since the early 1990s, to deliver functional CFTR genes to affected epithelial cells [22]. Adenoassociated virus (AAV) vectors have shown particular promise due to their ability to transduce airway epithelial cells and their relatively low immunogenicity compared to other viral vectors.

Recent advances in AAV vector engineering have improved targeting specificity and reduced immune responses [24]. However, challenges remain in achieving sufficient gene expression levels and duration to provide clinical benefits. The large size of the CFTR gene also complicates vector design and limits packaging efficiency.

Non-viral approaches

Non-viral gene therapy approaches have also been investigated, including lipid-based delivery systems and direct administration of plasmid DNA [23]. A phase 2b trial of nebulized plasmid DNA complexed with a cationic lipid showed modest but significant improvements in lung function. While the effects were smaller than those achieved with CFTR modulators, the study demonstrated that gene therapy can provide clinical benefits.

The main advantages of non-viral approaches include reduced immunogenicity and the ability to accommodate larger genetic constructs. However, transfection efficiency remains lower than with viral vectors, and repeated dosing may be necessary to maintain therapeutic effects.

Molecular basis of CF pathophysiology

Ion transport dysfunction

The fundamental defect in CF involves disrupted chloride transport across epithelial membranes, but the consequences extend beyond simple ion channel dysfunction [19]. Loss of CFTR function leads to altered composition of airway surface liquid, with reduced chloride secretion and increased sodium absorption through ENaC. This creates an osmotic imbalance that dehydrates the mucus layer covering epithelial surfaces.

The dehydrated mucus becomes thick and sticky, impairing the normal mucociliary clearance mechanism that removes inhaled particles and pathogens from the airways [19]. This creates an environment conducive to bacterial colonization, particularly by Pseudomonas aeruginosa, which forms biofilms that are resistant to both immune clearance and antibiotic treatment.

Inflammatory pathways

CF is characterized by excessive and persistent inflammation that contributes significantly to disease progression [19]. The inflammatory response involves multiple pathways, including NF-κB activation, which leads to increased production of pro-inflammatory cytokines and chemokines. This inflammation occurs even in the absence of infection, suggesting that CFTR dysfunction itself triggers inflammatory cascades.

Understanding these inflammatory pathways has led to the development of anti-inflammatory therapies, though results have been mixed. The challenge lies in reducing harmful inflammation while preserving the immune system's ability to fight infections, which remain a major threat in CF patients.

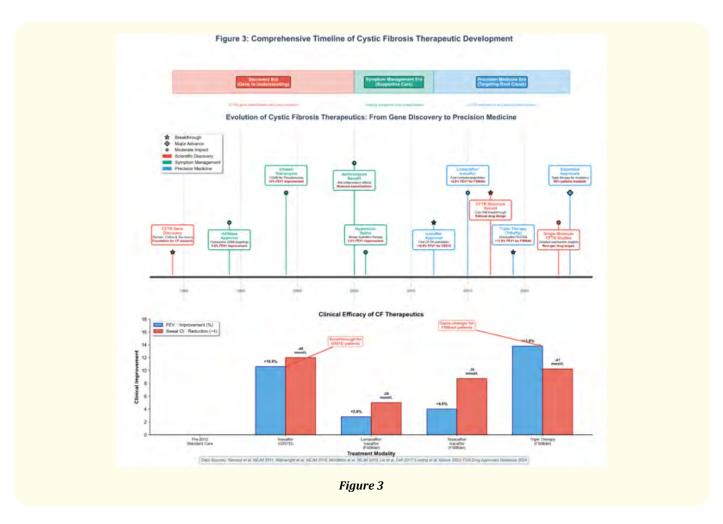
Future directions and challenges

Precision medicine approaches

The success of CFTR modulators has demonstrated the power of precision medicine in CF treatment. Future drug development will likely focus on rare mutations that are not addressed by current therapies. This includes developing mutation-specific correctors and potentiators, as well as combination approaches that can address multiple defects simultaneously.

Biomarker development is crucial for advancing precision medicine approaches. Sweat chloride testing has proven invaluable for assessing CFTR function, but additional biomarkers are needed to optimize dosing, predict treatment responses, and monitor long-term effects.

Combination strategies


The success of combination therapies suggests that future treatments may involve even more complex combinations targeting multiple aspects of CF pathophysiology. This could include combining CFTR modulators with anti-inflammatory agents, mucus modulators, or therapies targeting bacterial infections.

Drug delivery optimization

Improving drug delivery to the airways remains an important challenge, particularly for inhaled therapies. Advances in formulation science and delivery devices could enhance the effectiveness of existing drugs and enable the development of new therapeutic approaches.

Conclusion

The past decade has witnessed a remarkable transformation in CF therapeutics, driven by detailed molecular understanding of CFTR structure and function. The development of CFTR modulators represents a paradigm shift from symptom management to precision medicine that addresses the root causes of disease. Structural biology studies have provided the foundation for rational drug design, enabling the creation of potentiators and correctors that restore CFTR function in patients with specific mutations.

The success of combination therapies has demonstrated that substantial clinical benefits are achievable when multiple aspects of CFTR dysfunction are addressed simultaneously. This has transformed the outlook for many CF patients, with significant improvements in lung function and quality of life now possible.

However, challenges remain. Not all mutations respond to current therapies, and some patients show limited responses even to advanced combination treatments. Emerging strategies, including read-through agents, ENaC modulators, and gene therapy approaches, offer hope for addressing these unmet needs.

The CF field serves as a model for how detailed molecular understanding can drive therapeutic innovation. The integration of structural biology, chemical biology, and clinical research has created a powerful platform for drug development that continues to yield new insights and therapeutic opportunities. As our understanding of CFTR biology deepens and new therapeutic targets are identified, the prospects for further improving outcomes for CF patients remain bright.

The journey from gene discovery to effective therapies has taken more than three decades, but the pace of progress continues to accelerate. The molecular insights gained from CF research have implications beyond this single disease, providing lessons for developing precision medicines for other genetic disorders. The chemistry underlying CF therapeutics represents a success story of translational research that continues to evolve and improve patient outcomes.

Bibliography

- 1. Liu F., et al. "Molecular structure of the human CFTR ion channel". Cell 169.1 (2017): 85-95.
- 2. Ramsey BW., et al. "A CFTR potentiator in patients with cystic fibrosis and the G551D mutation". New England Journal of Medicine 365.18 (2011): 1663-1672.
- 3. Levring J., et al. "CFTR function, pathology and pharmacology at single-molecule resolution". Nature 616.7957 (2023): 606-614.
- 4. Zeng ZW., et al. "Molecular dynamics study of Cl⁻ permeation through human CFTR". Cellular and Molecular Life Sciences 80.2 (2023): 51.
- 5. Fiedorczuk K and Chen J. "Mechanism of CFTR correction by type I folding correctors". Cell 185.1 (2022): 158-168.
- 6. Park J-S., et al. "The structures of protein kinase A in complex with CFTR: Mechanisms of phosphorylation and noncatalytic activation". Proceedings of the National Academy of Sciences of the United States of America 121.46 (2024): e2409049121.
- 7. Levring J., et al. "Structural identification of a selectivity filter in CFTR". Proceedings of the National Academy of Sciences of the United States of America 121.9 (2024): e2316673121.
- 8. Laselva O., et al. "Identification of binding sites for ivacaftor on the CFTR". Science Advances 7.19 (2021): eabd5973.
- 9. Wang Y., *et al.* "Potentiation of the cystic fibrosis transmembrane conductance regulator Cl⁻ channel by ivacaftor is temperature independent". *American Journal of Physiology-Lung Cellular and Molecular Physiology* 315.5 (2018): L846-L857.
- 10. Middleton PG., et al. "Elexacaftor-tezacaftor-ivacaftor for cystic fibrosis with a Phe508del mutation". New England Journal of Medicine 381.19 (2019): 1809-1819.
- 11. Heijerman HG., *et al.* "Efficacy and safety of the elexacaftor plus tezacaftor plus ivacaftor combination regimen in people with cystic fibrosis homozygous for the F508del mutation: a double-blind, randomised, phase 3 trial". *Lancet* 394.10212 (2019): 1940-1948.
- 12. Sermet-Gaudelus I., *et al.* "Ataluren (PTC124) induces cystic fibrosis transmembrane conductance regulator protein expression and activity in children with nonsense mutation cystic fibrosis". *American Journal of Respiratory and Critical Care Medicine* 182.10 (2010): 1262-1272.
- 13. Kerem E., *et al.* "Ataluren for the treatment of nonsense-mutation cystic fibrosis: a randomised, double-blind, placebo-controlled phase 3 trial". *Lancet Respiratory Medicine* 2.7 (2014): 539-547.
- 14. Scott DW., et al. "SPX-101 is a novel epithelial sodium channel-targeted therapeutic for cystic fibrosis that restores mucus transport". American Journal of Respiratory and Critical Care Medicine 196.6 (2017): 734-744.
- 15. Couroux P., et al. "Phase 1 studies of SPX-101, a novel ENaC-downregulator, in healthy volunteers and cystic fibrosis patients". *Pediatric Pulmonology* 54.2 (2019): 109-119.

- 16. Wainwright CE., et al. "Lumacaftor-ivacaftor in patients with cystic fibrosis homozygous for Phe508del". New England Journal of Medicine 373.3 (2015): 220-231.
- 17. Wang X., et al. "Hsp90 cochaperone Aha1 downregulation rescues misfolding of CFTR in cystic fibrosis". Cell 127.4 (2006): 803-815.
- 18. Rymut SM., et al. "Reduced microtubule acetylation in cystic fibrosis epithelial cells". American Journal of Physiology-Lung Cellular and Molecular Physiology 305.6 (2013): L419-L431.
- 19. Stoltz DA., et al. "Origins of cystic fibrosis lung disease". New England Journal of Medicine 372.4 (2015): 351-362.
- 20. Rowe SM., et al. "Cystic fibrosis". New England Journal of Medicine 352.19 (2005): 1992-2001.
- 21. Gadsby DC., et al. "The ABC protein turned chloride channel whose failure causes cystic fibrosis". Nature 440.7083 (2006): 477-483.
- 22. Flotte TR., et al. "Stable in vivo expression of the cystic fibrosis transmembrane conductance regulator with an adeno-associated virus vector". Proceedings of the National Academy of Sciences of the United States of America 90.22 (1993): 10613-10617.
- 23. Alton EW., et al. "Repeated nebulisation of non-viral CFTR gene therapy in patients with cystic fibrosis: a randomised, double-blind, placebo-controlled, phase 2b trial". Lancet Respiratory Medicine 3.9 (2015): 684-691.
- 24. Yan Z., et al. "Advances in gene therapy for cystic fibrosis lung disease". Human Molecular Genetics 28.R1 (2019): R88-R94.

Volume 14 Issue 11 November 2025 ©All rights reserved by Mehar Kaur Minhas and Alok S Shah.