

EC PULMONOLOGY AND RESPIRATORY MEDICINE Perspective

COVID-19 Influencing Thyroid Dysfunction

Porntep Siriwanarangsun¹, Attapon Cheepsattayakorn^{1,2*} and Ruangrong Cheepsattayakorn³

¹Faculty of Medicine, Western University, Pathumtani Province, Thailand ²10th Zonal Tuberculosis and Chest Disease Center, Chiang Mai, Thailand ³Department of Pathology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand

*Corresponding Author: Attapon Cheepsattayakorn, 10th Zonal Tuberculosis and Chest Disease Center, Chiang Mai, Thailand. Received: December 15, 2020; Published: August 14, 2024

Recently, a first case-report of thyroid dysfunction following SARS-CoV-2 (COVID-19) infection, namely subacute thyroiditis was reported [1]. This female patient had a painful, enlarged thyroid gland [2]. The exact mechanisms that SARS-CoV-2 (COVID-19) causes thyroid dysfunction are not known. Nevertheless, mechanisms that are demonstrated through SARS virus are potential central mechanism [3-5], direct viral replication [6-9], interaction with thyroid-ACE2 receptor [10-12], and inflammatory response, apoptosis, and local damage [13-16]. SARS-CoV-2 (COVID-19) and thyroid dysfunction impact each other by: 1) Graves's ophthalmopathy with actively undergoing immunosuppressive therapy are likely to increase risk of severe coronavirus infection development [17]; 2) Patients with poorly controlled thyroid dysfunction, particularly those with thyrotoxicosis, may be at risk of thyroid storm [18]; and 3) Systemic disease, including COVID-19 are related to low-T3 syndrome or non-thyroidal illness [19]. As pregnant women with hyper- or hypothyroidism are at increased risk of development of more severe COVID-19 disease, they are particularly suggested to social distancing adherence [20]. In the first trimester of pregnancy, the preferred treatment is the lowest possible dose of propylthiouracil (PTU) [21].

In conclusion, the following endocrine service is suggested in the COVID-19 crisis: satellite blood-testing services, remote monitoring services, face-to-face appointments, and telephone and video consultation.

Bibliography

- 1. Brancatella A., *et al.* "Subacute thyroiditis after SARS-CoV-2 infection". *The Journal of Clinical Endocrinology and Metabolism* 105 (2020): 2367-2370.
- Guimarães VC. "Subacute and Riedel's thyroiditis". In: Endocrinology: Adult and Pediatric, 7th edition. Jameson JL, De Groot LJ, eds. Elsevier: Saunders, PA, USA (2016): 1541-1556.
- 3. Wang W., *et al.* "Evaluation and observation of serum thyroid hormone and parathyroid hormone in patients with severe acute respiratory syndrome". *The Journal of the Chinese Antituberculosis Association* 25 (2003): 232-234.
- 4. Leow MK., *et al.* "Hypocortisolism in survivors of severe acute respiratory syndrome (SARS)". *Clinical Endocrinology* 63.2 (2005): 197-202.
- 5. Chrousos GP and Kaltsas G. "Post-SARS sickness syndrome manifestations and endocrinopathy: how, why, and so what?" *Clinical Endocrinology* 63.4 (2005): 363-365.
- 6. Desailloud R and Hober D. "Viruses and thyroiditis: an update". *Virology Journal* 6 (2009): 5.
- 7. Chang L., et al. "Coronavirus disease 2019: coronaviruses and blood safety". Transfusion Medicine Reviews 34.2 (2020): 75-80.

Citation: Attapon Cheepsattayakorn., et al. "COVID-19 Influencing Thyroid Dysfunction". EC Pulmonology and Respiratory Medicine 13.8 (2024): 20-21.

- 8. Ding Y., *et al.* "Organ distribution of severe acute respiratory syndrome (SARS) associated coronavirus (SARS-CoV) in SARS patients: implications for pathogenesis and virus transmission pathways". *The Journal of Pathology* 203.2 (2004): 622-630.
- 9. Gu J., et al. "Multiple organ infection and the pathogenesis of SARS". Journal of Experimental Medicine 202.3 (2005): 415-424.
- 10. Liu F., et al. "ACE2 expression in pancreas may cause pancreatic damage after SARS-CoV-2 infection". *Clinical Gastroenterology and Hepatology* (2020).
- 11. Li MY., *et al.* "Expression of the SARS-CoV-2 cell receptor gene ACE2 in a wide variety of human tissues". *Infectious Diseases of Poverty* 9.1 (2020): 45.
- 12. Kuba K., *et al.* "A crucial role of angiotensin converting enzyme 2 (ACE2) in SARS coronavirus-induced lung injury". *Nature Medicine* 11.8 (2005): 875-879.
- 13. Perlman S and Dandekar AA. "Immunopathogenesis of coronavirus infections: implications for SARS". *Nature Reviews Immunology* 5.12 (2005): 917-927.
- 14. Law PT., et al. "The 3a protein of severe acute respiratory syndrome-associated coronavirus induces apoptosis in Vero E6 cells". Journal of General Virology 86.7 (2005): 1921-1930.
- 15. Tan YJ., *et al.* "Overexpression of 7a, a protein specifically encoded by the severe acute respiratory syndrome coronavirus, induces apoptosis via a caspase-dependent pathway". *Virology Journal* 78.24 (2004): 14043-14047.
- 16. Yuan X., et al. "G0/G1 arrest and apoptosis induced by SARS-CoV 3b protein in transfected cells". Virology Journal 2 (2005): 66.
- 17. Antonelli A., *et al.* "Graves' disease: epidemiology, genetic and environmental risk factors and viruses". *Best Practice and Research: Clinical Endocrinology and Metabolism* 34 (2020): 101387.
- 18. De Leo S., et al. "Hyperthyroidism". Lancet 388 (2016): 906-918.
- 19. Fliers E., et al. "Thyroid function in critically ill patients". Lancet: Diabetes and Endocrinology 3 (2015): 816-825.
- 20. http://www.rcog.org.uk/globalassets/documents/guidelines/2020-04-17-coronavirus-covid-19-infection-in-pregnancy.pdf
- Alexander EK., et al. "2017 Guidelines of the American Thyroid Association for the diagnosis and management of thyroid disease during pregnancy and postpartum". Thyroid 27 (2017): 315-389.

Volume 13 Issue 8 August 2024 © All rights reserved by Attapon Cheepsattayakorn., *et al.*