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Abstract
Background: Lung cancer contributes more deaths worldwide compared with the other top three cancers together. So that 
identification of additional biomarkers that can assist in early diagnosis and “tailor” specific therapeutic protocols would vastly 
improve the death rate for this appalling cancer.

Methods: Three-gene expression datasets (GSE7670, GSE10072, GSE31547) were downloaded from the Gene Expression Omnibus 
repository. The differentially expressed genes filter of microarray data were analyzed via multiple open source R/Bioconductor 
software packages. We also performed functional and pathway enrichment analysis, protein-protein interaction network and module 
construction as well as gene expression level comparison. We then estimated and analyzed overall survival (OS) and hazard ratios of 
key biomarkers in terms of histology, stage and smoking history by using KM plotter in lung cancer.

Results: A total of 442 differentially expressed genes were ultimately obtained, including 123 upregulated genes and 319 
downregulated genes. We identified six key genes with a high degree of connectivity in the PPI network, namely, CCNB1, MAD2L1, 
CDK1, ZWINT, RRM2 and TOP2A. Prognostic analysis demonstrated that high expression of each key genes was significantly correlated 
to worse OS for Lung adenocarcinoma(LUAD) patients, while not for lung squamous cell carcinoma patients. Notably, high expression 
of these genes was associated with negative OS in clinical stage I LUAD patients, but not in stage II. In addition, only the increased 
mRNA expression of CCNB1 and MAD2L1 was related to worse OS in LUAD patients with smoking history.

Conclusion: Our bioinformatics analysis unveiled CCNB1, MAD2L1, CDK1, ZWINT, RRM2 and TOP2A as putative key biomarkers, and 
they may have potentially used as independent factors for the early diagnosis, adjuvant therapy and accurate prognosis of LUAD 
patients.
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Introduction

Lung cancer ranks as the predominant cause of cancer-associated mortality in the United States, accounting for nearly 25% of all 
cancer deaths [1]. Approximately 85% of lung cancer cases are non-small cell lung carcinoma (NSCLC), of which LUAD is the mainly 
diagnosed histological subtype [2]. LUAD is more likely to occur among never smokers compared with lung squamous cell carcinoma 
(LUSC) [3]. Although treatment for lung cancer has shifted from the use of cytotoxic therapy to the current age of personalized treatment 
based on molecular alterations, the 5-year relative survival rate for this neoplasm is consistently low (around 15%). Owning to a lack of 
particular clinical symptoms, up to two-thirds of LUAD patients is typically diagnosed at an advanced stage, leaving little opportunity for 
effective treatment [4]. Thus, exploring novel key biomarkers could assist in early diagnosis and deliver specific treatment protocols for 
LUAD patients.

Development of putative biomarkers associated with the pathogenesis and prognosis of LUAD calls for a holistic understanding of the 
underlying bioinformatics [5]. In this regard, the accessibility of next-generation sequencing (NGS) in the last decade has resulted in the 
generation of high-throughput genomic profiling and multiplex genotyping that underpin the quantitative assessment of Transcriptomic 
profiling. Notably, The most significant driver mutations found in LUAD, such as sensitizing EGFR mutations, BRAF mutations as well as ALK 
and ROS1 rearrangements, have approved by the US Food and Drug Administration (FDA) [6]. However, LUAD is a highly heterogeneous 
disease that often harbors genetic mutations and deficiencies in tumor suppressor genes [7]. Furthermore, the majority of previous 
studies primarily focused on different microarray platforms and overlooked the batch effects that arise from technical variation between 
independent studies, all of which could significantly hamper downstream analyses [8-10]. Therefore, the identification of additional genes 
altered in LUAD is urgently needed to fulfill clinical requirements. 

Herein, we first performed background normalization, batch effect correction, and differentially expressed genes (DEGs) filter 
of microarray data via multiple open source R /Bioconductor software packages. Then, analysis of Gene Ontology (GO) and Kyoto 
Encyclopedia of Genes and Genomes (KEGG) pathways of the DEGs were implemented. Subsequently, a protein-protein interaction (PPI) 
network and screening of active modules were constructed. In addition, We compared the gene expression level of key biomarkers in 
LUAD, LUSC tissues, and normal tissues via The Cancer Genome Atlas (TCGA) cohort, respectively. Finally, we estimated and analyzed 
overall survival (OS) and hazard ratios (HR) of key biomarkers in terms of histology, stage as well as smoking history by using KM plotter 
in lung cancer. Together, our study aimed to identify key biomarkers that may have potentially used to improve LUAD patient outcomes in 
the near future, paving the way for precision medicine.

Materials and Methods

Microarray data

Three gene expression datasets (GSE7670, GSE10072, GSE31547) were downloaded from Gene Expression Omnibus (GEO) repository 
by the National Center of Biotechnology Information using the keywords “microarray and lung adenocarcinoma”. All included datasets 
were further screened as the following criteria: (1) the selected tissue samples were originated from Homo sapiens and contained LUAD 
and corresponding adjacent or normal tissues. (2) each dataset included at least 40 samples. (3) the experiments of all datasets were 
performed by GPL96 (Affymetrix Human Genome U133A Array) platform, doing this not only minimizes batch effects that result from 
different microarray platforms but also allows the annotation of the same set of genes with the same probes. The data provided by GEO is 
public and did not require the approval of a local ethics committee.

Integrated analysis of microarray datasets

We processed the microarray datasets using multiple open source R/Bioconductor software packages. First, affy package [11] was 
used to perform quality control of all of the microarray CEL files and the RMA method [12] was applied to the raw data for background 
correction, normalization, and probe-to-gene mapping. Next, the mean value was calculated using the aggregate function as the expression 
value of that particular gene when multiple probes corresponded to the same gene symbol. K-nearest neighbor (KNN) method was 
employed to supplement missing values when the expression value of the probe was absent. Then, using the Combat algorithm in sva 
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package [13], we corrected for batch effects that arise from technical variation between independent studies. Subsequently, the DEGs of 
the samples between tumor and normal were identified via the limma package [14] by applying the following statistical criteria: (1) log 2 
fold change ≥ 1; (2) adjusted P-value < 0.01, Such stringent cutoff thresholds generate only a handful of significant genes that distinguish 
tumors from tumor-free lung tissues. All DEGs were visualized in a volcano plot produced using the ggplot2 package. Finally, Disease 
Ontology Semantic and Enrichment analysis (DOES) package [15] was applied to verify the identification of DEGs association with lung 
diseases due to DO is an important annotation in translating molecular findings from high-throughput data to clinical relevance.

Functional enrichment analysis of DEGs

Gene ontology (GO) analysis, which included molecular function (MF), biological process (BP) and cellular component (CC), is 
increasingly applied for annotating genes and gene products and for identifying characteristic biological attributes of high-throughput 
genome or transcriptome data [16]. Kyoto Encyclopedia of Genes and Genomes (KEGG; https://www.kegg.jp/), which links genomic 
information with higher-order functional information, is a well-known database for biological interpretation of genome sequences 
and other high-throughput data [17]. DAVID (https://david.ncifcrf.gov/) is an essential online tool for high-throughput gene functional 
analysis, which provides the functionality to perform simultaneous GO and KEGG analysis for DEGs [18]. P < 0.05 was set as the cut-off 
criterion for significant enrichment. The results of the functional enrichment analysis of upregulated and downregulated genes were 
visualized via R/RStudio software.

Construction of the PPI network and screening of active modules

The Search Tool for the Retrieval of Interacting Genes (STRING) database (http://string-db.org/) is online software containing 
comprehensive interactions of lists of proteins and genes pertaining to homo sapiens [19]. Cytoscape (version 3.7.0) is an open-source 
tool for visualizing molecular interaction networks [20]. In the current study, DEGs were uploaded to STRING to build a PPI network 
and a combined score of ≥ 0.4 was used as the cut-off value. The Cytoscape plugin Molecular Complex Detection (MCODE) was applied 
to identify notable modules in this PPI network (Bader and Hogue, 2003) with degree cutoff = 2, node score cutoff = 0.2, k-core = 2, and 
max. depth = 100 [21]. Moreover, the Maximal Clique Centrality (MCC) method in Cytoscape plugin cytoHubba was also applied to identify 
notable module since MCC has a better performance on the precision of predicting essential proteins from the yeast PPI network among 
the 11 methods [22]. Subsequently, the enrichment analysis of the module was conducted by the clusterProfiler package in R [23].

Expression level analysis of hub genes

The Gene Expression Profiling Interactive Analysis (GEPIA, http://gepia.cancer-pku.cn/index.html), which applies a standard 
processing pipeline, is a web-based tool to provide key interactive and customizable functions based on the Cancer Genome Atlas (TCGA) 
and Genotype-Tissue Expression (GTEx) data [24]. In the present study, we demonstrated the gene expression level of key genes in LUAD 
and LUSC tissues and normal tissues via GEPIA, Then the box plots were generated to visualize the relationship.

Survival analysis and hazard ratios estimation of hub genes

The correlation of key biomarkers expression with OS was analyzed using an online database, which was established using gene 
expression data and survival information of non-small cell lung cancer (NSCLC) patients downloaded from the Cancer Biomedical 
Informatics Grid (caBIG), GEO and TCGA repositories [25]. In addition, the clinical data of NSCLC patients contained histology, stage, 
grade, gender, and smoking history, and treatment groups comprise surgery, chemotherapy, and radiotherapy. In this study, array quality 
control was selected “exclude biased arrays”. The cut-off points of individual key biomarkers expression and other clinicopathological 
parameters including histology subtypes, smoking history, clinical stages were assessed according to their median mRNA levels among 
the selected lung cancer samples via the Kaplan-Meier plotter (http://kmplot.com/analysis/index.php?p = service&cancer = lung). The 
Log-rank p-value and hazard ratio (HR) with 95% confidence intervals (CI) were calculated and displayed automatically on the webpage. 
HR and 95% CI > 1 were considered as a poor prognostic indicator of LUAD and P value < 0.01 was considered statistically significant to 
reduce the false positive rate.
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Results

Data preprocessing and identification of DEGs

There were 116 LUAD samples and 97 normal samples in this study (Table 1). The effect of sva package for removing batch effects and 
other unwanted variation was explicitly demonstrated on three preprocessed datasets (Figures 1), 442 DEGs were ultimately obtained 
in LUAD samples compared with normal samples, including 123 upregulated and 319 downregulated genes (Figure 2A). DOSE package 
analysis showed that the DEGs were closely related to lung disease and non-small cell lung carcinoma (Figure 2B), thus verified our 
previous finding.

GEO PMID Platform Normal Tumor Reference

GSE7670 17540040
GPL96[HG−U133A] Affymetrix Human Genome 

U133A Array
28 28 Su LJ., et al. 2007

GSE10072 18297132
GPL96[HG−U133A] Affymetrix Human Genome 

U133A Array
49 58 Landi M., et al. 2008

GSE31547 15701842
GPL96[HG−U133A] Affymetrix Human Genome 

U133A Array
20 30 Dobbin KK., et al. 2005

Table 1: The gene expression profile data characteristics.
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Figure 1 The batch effects that arise from technical variation between independent studies 
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detected using the Combat algorithm in sva package.
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Functional enrichment analysis of DEGs

For a thorough understanding of the DEGs, GO terms and KEGG pathways were applied to analyze upregulated and downregulated 
DEGs, respectively. For BP, GO analysis showed that the upregulated DEGs were significantly associated with collagen catabolic process, 
extracellular matrix organization, and extracellular structure organization, while the downregulated DEGs were associated with regulation 
of inflammatory response, vasculature development and angiogenesis (Figure 3BP). For MF, the upregulated DEGs were mainly enriched 
in extracellular matrix structural constituent, protease binding, and platelet-derived growth factor binding, while the downregulated 
DEGs enriched in glycosaminoglycan binding, enzyme inhibitor activity and growth factor binding (Figure 3MF). For CC, the upregulated 
DEGs were chiefly enriched in fibrillar collagen trimer, banded collagen fibril, and proteinaceous extracellular matrix, and downregulated 
DEGs enriched in the extracellular matrix, proteinaceous extracellular matrix and lamellar body (Figure 3CC). In addition. KEGG pathway 
analysis revealed that the upregulated DEGs were mainly enriched in Protein digestion and absorption and p53 signaling pathway, while 
the downregulated DEGs were mainly enriched in Complement and coagulation cascades and Fluid shear stress and atherosclerosis 
(Table 2).

PPI network construction and key genes screening

we acquired the PPI network of a total of 1484 protein pairs corresponding to 441 nodes by mapping into STRING. Our results showed 
that most of the DEGs present in notable modules were upregulated genes rather than downregulated genes. The most significant module 
with score > 5 was obtained by MCODE (Supplementary Figure S1). Then, we also used the MCC algorithm in CytoHubba plugin to search 
and explore the PPI network and the top six genes among the two subsets regard as the key genes (Figure 4A). CCNB1, MAD2L1, CDK1, 
ZWINT, RRM2 and TOP2A were identified as key genes with higher node degrees both in MCODE module and MCC algorithm (Table 3). 
Furthermore, KEGG pathway enrichment analysis showed that module 1 was mainly associated with the mitotic cell cycle pathway, Oocyte 
meiosis and p53 signaling pathway (Figure 4B).

Figure 2: Identification and verification of DEGs. (A) Volcano Plot visualizing the DEGs. The vertical lines demark the fold-change 
values. The right vertical line corresponds to log2FC > 1 changes, while the left vertical line corresponds to log2FC < -1 changes. 
The horizontal line marks adjusted P-value < 0.01; (B) DOES package was applied to annotate the identification of DEGs. DEGs: 

differentially expressed genes; DOES: Disease Ontology Semantic and Enrichment analysis.
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Figure 3: Top 15 Gene Ontology analysis of up-regulated and down-regulated differentially expressed genes associated with LUAD. 
The left represents up-regulated DEGs, while the right represents down-regulated DEGs. BP: Biological Processes; MF: Molecular 

Function; CC: Cellular Component.
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Figure 4: (A) MCC algorithm in CytoHubba plugin to explore key genes; (B) pathway analysis of Module 1.

Supplementary Figure S1: MCODE was applied to identify notable module in this PPI network with degree cutoff = 2, node score 
cutoff= 0.2, k-core = 2, and max. depth = 100. MCODE: Molecular Complex Detection.
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Gene Type
MCODE MCC

Degree MCODE Score Rank Score
TOP2A Up 31 20 1 2.43E-18
CCNB1 Up 25 20 1 2.43E-18
CDK1 Up 24 20 1 2.43E-18
RRM2 Up 23 20 1 2.43E-18

ZWINT Up 22 20 1 2.43E-18
MAD2L1 Up 22 20 1 2.43E-18

Table 3: Hub genes with high degree of connectivity.

MCODE: Molecular Complex Detection; MCC: Maximal Clique Centrality.

Expression level and prognostic values of key genes

GEPIA revealed that key genes expression were markedly higher both in LUAD and LUSC tissues as compared with normal tissues (P 
< 0.01) based on 969 tumors and 109 normal samples from the TCGA databases (Figure 5). The prognostic values of each key genes in 
LUAD were examined in Kaplan Meier-plotter. The Affymetrix IDs are valid: 214710_s_at (CCNB1), 210559_s_at (CDK1), 1554768_a_at 
(MAD2L1), 209773_s_at (RRM2), 201292_at (TOP2A), 204026_s_at (ZWINT). It was found that high expression of CCNB1 [HR 2.04 (1.6-
2.61), P = 5.4e-09], CDK1 [HR 2.5 (1.94-3.21), P = 1.7e-13], MAD2L1 [HR2.41 (1.86-3.14), P = 1.3e-11], RRM2 [HR1.95 (1.53-2.49), P = 
3.2e-08], TOP2A [HR1.76 (1.38-2.23), P = 3e-06], ZWINT [HR1.35 (1.07-1.71), P = 0.011] was significantly correlated to worse OS for LUAD 
patients (n = 720) (Figure 6). However, higher mRNA expressions of key genes (CCNB1 [HR1 (0.79-1.27), P = 0.99], CDK1 [HR0.92 (0.73-
1.17), P = 0.51], MAD2L1 [HR1.29 (0.94-1.76), P = 0.12], RRM2 [HR0.98 (0.77-1.24), P = 0.87], TOP2A [HR0.97(0.77-1.23), P = 0.8], ZWINT 
[HR0.99 (0.78-1.25), P = 0.91])were not associated with OS for LUSC patients (n = 720) (Table 4). 

ID Description P.adjust Genes
The top 4 enriched KEGG pathways of upregulated genes

hsa04974 Protein digestion and absorption 7.72E−4
COL10A1, COL11A1, COL1A1, COL3A1, COL5A1, COL5A2, 

COL1A2, KCNN4

hsa04115 P53 signaling pathway 2.42E−3 RRM2, IGFBP3, CCNB1, CDK1, SFN, PERP

hsa04512 ECM−receptor interaction 2.41E−2 SPP1, THBS2, COL1A1, COMP, COL1A2

hsa04110 Cell cycle 2.43E−2 CDC20, CCNB1, CDK1, BUB1B, SFN, MAD2L1

The top 4 enriched KEGG pathways of downregulated genes

hsa04610 Complement and coagulation cascades 2.04E−07
C14ORF13, C1QA, C1QB, SERPING1, C4BPA, C7, CLU, CFD, 

PROS1, THBD, VWF, VSIG4, CPB2

hsa05418 Fluid shear stress and atherosclerosis 1.94E−2
CAV1, CAV2, CDH5, DUSP1, EDN1, FOS, NCF2, PECAM1, SELE, 

THBD, KLF2

hsa04670 Leukocyte transendothelial migration 3.62E−2
CDH5, NCF2, JAM2, PECAM1, CLDN5, CLDN18, JAM3, MYL9, 

CXCL12

hsa05020 Prion diseases 3.62E−2 C1QA, C1QB, C7, EGR1, IL6

Table 2: The top 4 enriched KEGG pathways of differentially expressed genes associated with LUAD.

ID=identification number of KEGG pathway. Description represents the name of KEGG pathway.
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Figure 5: Analysis of six hub genes expression level both in LUAD and LUSC tissues as compared with normal tissues (P < 0.01) 
based on 969 tumors and 109 normal samples from the TCGA databases. The red and gray boxes represent cancer and normal 

tissues, respectively. (A) CCNB1; (B) CDK1; (C) MAD2L1; (D) RRM2; (E) TOP2A;(F) ZWINT; LUAD: Lung Adenocarcinoma; LUSC: 
Lung Squamous Cell Carcinomas.

Figure 6: Prognostic roles of six hub genes in the LUAD patients. Survival curves are plotted for LUAD cancer patients. The 
Affymetrix IDs are valid: 214710_s_at (CCNB1); 210559_s_at (CDK1); 1554768_a_at (MAD2L1); 209773_s_at (RRM2);  

201292_at (TOP2A); 204026_s_at (ZWINT).
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Biomarkers Smoking status Cases HR (95% CI) P value
CCNB1 Smoked 246 2.35 (1.42 - 3.89) 0.00059*

Never smoked 143 1.37 (0.61 - 3.09) 0.45
MAD2L1 Smoked 246 1.87 (1.14 - 3.08) 0.012*

Never smoked 143 1.23 (0.54 - 2.79) 0.62
CDK1 Smoked 246 1.16 (0.73 - 1.85) 0.53

Never smoked 143 1.76 (0.76 - 4.03) 0.18
ZWINT Smoked 246 1.31 (0.82 - 2.09) 0.26

Never smoked 143 1.73 (0.76 - 3.96) 0.19
RRM2 Smoked 246 1.21 (0.54 - 2.71) 0.64

Never smoked 143 1.21 (0.54 - 2.71) 0.64
TOP2A Smoked 246 1.48 (0.92 - 2.37) 0.1

Never smoked 143 2.02 (0.86 - 4.74) 0.098

Table 5: Correlation of key genes expression with smoking status of LUAD patients.

*: P < 0.05.

For further assess the relationship between key genes and other clinicopathological parameters, we investigated the correlation with 
the patients’ smoking status (Table 5) and clinical stages (Table 6). Table 5 showed that high mRNA expression of CCNB1 [HR 2.35 (1.42 
- 3.89), P = 0.00059], MAD2L1 [HR 1.87(1.14 - 3.08), P = 0.012] correlated with worse OS in LUAD patients with smoking history(n = 
246),but not with nonsmoking history (n = 143). In addition, CDK1, ZWINT, RRM2 and TOP2A expression were not linked to OS in patients 
with and without smoking history. From table 6, elevated CCNB1 [HR2.85 (1.84 - 4.42), P = 1e-06], MAD2L1 [HR4.88 (2.92 - 8.17), P = 
2.5e-11], CDK1 [HR 2.16 (1.42  - 3.28), P = 0.00022], ZWINT [HR 1.82 (1.21 - 2.74), P = 0.0037], RRM2 [HR1.95 (1.3 - 2.94), P = 0.0011], 
and TOP2A [HR1.88 (1.25 -2.82), P = 0.002] mRNA expression was correlated with a worse OS in clinical stage I LUAD patients (n = 346). 
However, the expression of these mRNA had no effect on OS in clinical stage II LUAD patients (n = 136).

Biomarkers Histology Cases HR (95% CI) P value
CCNB1 LUSC 524 1 (0.79 - 1.27) 0.99

MAD2L1 LUSC 524 1.29 (0.94 - 1.76) 0.12
CDK1 LUSC 524 0.92 (0.73 - 1.17) 0.51

ZWINT LUSC 524 0.99 (0.78 - 1.25) 0.91
RRM2 LUSC 524 0.98 (0.77 - 1.24) 0.87
TOP2A LUSC 524 0.97(0.77 - 1.23) 0.8

Table 4: Correlation of key genes expression with overall survival in LUSC patients.

Biomarkers Clinical stages Cases HR (95% CI) P value
CCNB1 I 346 2.85 (1.84 - 4.42) 1e - 06*

II 136 1.08 (0.67 - 1.74) 0.76
MAD2L1 I 346 4.88 (2.92 - 8.17) 2.5e - 11*

II 136 1.22 (0.72 - 2.07) 0.47
CDK1 I 346 2.16 (1.42 - 3.28) 0.00022*

II 136 1.57 (0.97 - 2.54) 0.065
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Discussion and Conclusion

Lung cancer contributes more deaths worldwide compared with the other top three cancers together [1]. Biomarkers that can aid to 
early detection and “tailor” specific therapeutic regimen would tremendously ameliorate the death rate for this devastating cancer. In the 
present study, we incorporated into 116 LUAD and corresponding 97 normal samples from the three microarray databases. A total of 442 
DEGs were ultimately obtained, including 123 upregulated genes and 319 downregulated genes. Function enrichment analysis suggested 
that these gene signatures were significantly associated with the carcinogenesis of LUAD, such as extracellular matrix organization, 
p53 signaling pathway as well as mitotic cell cycle, which is in line with the previous studies [26-28]. We also identified six key genes 
with a high degree of connectivity in the PPI network, namely, CCNB1, MAD2L1, CDK1, ZWINT, RRM2 and TOP2A and uniformly all of 
them were upregulated genes in LUAD. GEPIA revealed that these genes expression level were markedly higher both in LUAD and LUSC 
tissues as compared with normal tissues based on TCGA cohort. Prognostic analysis demonstrated that high expression of each key genes 
was significantly correlated to worse OS for LUAD patients, while not for LUSC patients. Notably, high expression of these genes was 
associated with negative OS in clinical stage I LUAD patients, but not in stage II. In addition, only the increased mRNA expression of CCNB1 
and MAD2L1 was related to worse OS in LUAD patients with smoking history. Collectively, our bioinformatics analysis unveiled CCNB1, 
MAD2L1, CDK1, ZWINT, RRM2 and TOP2A as key biomarkers, and they may be crucial in the development and prognosis of LUAD.

Function enrichment analysis provides crucial complementary information into the collective biological characters of a panel of genes. 
Extracellular matrix (ECM), which could influence cellular events both at the physical and molecular level, plays a crucial function in 
tumor progression [29]. A recent study suggested that elevated ZEB1 causes LOXL2-mediated collagen deposition in the ECM to actuate 
lung cancer progression [30]. The p53 pathway is a pivotal factor that serves as an internal sentinel by preventing mutations caused by 
DNA damage or cellular stress [31]. Mutations in p53 are related to genomic instability and an increased susceptivity to cancer, and it is 
found that up to 50% of all cancers involve p53-inactivating mutations [32]. Unfortunately, p53 research has not yet generated extensive 
applications on cancer supervision and therapy due to the complexity and versatility in their biological effects [33]. The cell cycle consists 
of four sequential phases and dysregulation of its engine may trigger the cell proliferation that leads to cancer [34]. Analysis of the cell 
cycle machinery may provide a promising diagnostic and therapeutic interventions target in cancer as it locates downstream at the 
integration point of intricate oncogenic signaling networks [35]. 

Despite informative, pathways analyses do not provide a holistic and systematic view of a biological response or disease process. At 
present, a multitude of cell cycle associated genes has been demonstrated to be involved in the initiation and progression of lung cancer. 
Our study identified six key biomarkers via PPI network construction, of which TOP2A harbored higher node degree. TOP2A, an isoform 
in the topoisomerase II family, is cell cycle-dependent and mediates the topologic states of DNA during transcription [36]. Elevated 
expression of TOP2A was confirmed to be associated with the development and progression of NSCLC [37]. In addition, Labbé DP., et al. 
[38] found that TOP2A could be used as a marker for early detection of a subset of prostate cancer patients with aggressive potential. 
CDK1, a highly conserved small protein, is a critical determinant of mitotic progression. Aberrant activation of CDK1 is involved in the 
unbounded proliferation and apoptosis of ovarian cancer cells since the dysregulations of the upstream signaling pathway [39]. High 

ZWINT I 346 1.82 (1.21 - 2.74) 0.0037*
II 136 0.74 (0.46 - 1.2) 0.22

RRM2 I 346 1.95 (1.30 - 2.94) 0.0011*
II 136 1.10 (0.68 - 1.78) 0.7

TOP2A I 346 1.88 (1.25 - 2.82) 0.002*
II 136 1.08 (0.67 - 1.74) 0.76

Table 6: Correlation of key genes expression with OS in different clinical stage LUAD patients.

*: P < 0.05.
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CCNB1 expression is also detected in NSCLC and generally associated with negative prognosis for patients with early-stage NSCLC [40]. 
CCNB1 and its associated partner CDK1 provide a host of timely biofuel for cell cycle such as G2/M transition, whereas overexpression 
in the tumor may lead to uncontrolled cell growth that attenuates the efficacy of anti-cancer therapy [41]. The attenuated function of 
MAD2L1 might lead to reduced spindle checkpoint during mitosis that confers susceptibility to the development of lung cancer [42]. 
RRM2 is a member of Ribonucleotide reductase and frequently overexpressed in NSCLC patients, thus, it plays an important role in tumor 
progression [43]. ZWINT overexpression is also found in various malignant cancers, including breast [44] and ovarian cancers [45].

Comprehensive analysis of expression level and prognosis of key markers provides a better understanding of heterogeneity and 
complexity of LUAD on molecular biology. Our results demonstrate that over-expression of each key markers is an independent poor 
prognostic factor in early-stage LUAD, but not in LUSC. The different prognostic roles exhibited by key markers in LUAD and LUSC underscores 
the heterogeneity among these two histologic subtypes. Nicotine, one of the carcinogens, can motivate several signaling pathways that 
can induce the mutation, disrupt cell proliferation, apoptosis, angiogenesis, and promote a tumor-supporting microenvironment [46,47]. 
However, approximately 25% of lung cancer cases worldwide are not associated with tobacco smoking and most of them are LUAD 
subtypes [48,49]. In this study, we find that high expression of CCNB1, MAD2L1, but not that CDK1, ZWINT, RRM2 and TOP2A are correlated 
with the smoking status of LUAD patients.

At present, several studies have been conducted to explore key genes correlated with diagnosis and prognosis of NSCLC, creating new 
opportunities for precision medicine. Tang., et al. [50] identified nine genes from one GEO dataset via bioinformatics analysis including 
identification of DEGs using R, GO enrichment analysis, PPI network construction, survival analysis. Xiao., et al. [51] explored 195 DEGs by 
analyzing 4 GEO datasets from different platforms and identified 5 hub genes associated with poor OS based on the PPI network analysis. 
Wang., et al. [52] determined CCND1 mRNA as the putative prognostic biomarkers using GSEA analysis and constructed microRNA-mRNA 
regulatory networks in NSCLC. Piao., et al. [53] targeted 16 hub genes and further found 14 of them were related to prognosis of NSCLC 
patients by integrated bioinformatics approach incorporating GO and KEGG analysis, PPI network development and OS analysis. Compared 
to previous studies, the merits of the present work are primarily embodied in the following points: First, our study concentrates on 
the same chip platform and utilize sva package to remove batch effects arising from technical variation between independent studies. 
Secondly, LUAD is a highly heterogeneous disease, while most previous studies mainly focused on NSCLC patients rather than LUAD 
patients. Our results demonstrate that over-expression of each key markers is an independent negative prognostic factor in early-stage 
LUAD, but not in LUSC. Finally, we validate the gene expression level of key biomarkers in LUAD, LUSC tissues, and normal tissues via the 
TCGA cohort and analysis of prognostic values with various clinicopathologic characteristics. However, our study was mainly focused on 
the integrating bioinformatics approach with clinical indices, further experiments are needed to validate the candidate genes which we 
disclosed in LUAD.
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