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Abstract
Acute lung injury (ALI) is a syndrome of alveolar-capillary damage, resulting in hyper-permeability and non-hydrostatic pulmo-

nary oedema. It is most commonly caused by sepsis, gastric aspiration, shock and trauma, and carries an extremely high mortality. 
The pathophysiology of ALI is poorly understood and therefore pharmacological treatments have not been successful. In the last 
decade, neutrophil extracellular traps (NETs) have been discovered and their pathological roles have been well characterized. One 
major role of NETs is its involvement in the development of ALI. NETs function as a part of the innate immune response but have 
been demonstrated to be associated with transfusion-related ALI and infection-related ALI. Extracellular histones, DNA, platelet-
neutrophil interaction and coagulation activation could be the crucial factors in the development of NET-associated ALI. These factors 
as well as NETs therefore become potential therapeutic targets in ALI.
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Acute lung injury (ALI) is a syndrome of inflammation and increased vascular permeability characterized by acute and persistent 
widespread alveolar and capillary endothelial cell damage resulting in non-hydrostatic pulmonary oedema [1]. The hallmarks of ALI 
include inflammation, neutrophil activation and migration, and subsequent dysfunction of the alveolar-capillary membrane. It eventually 
causes severe hypoxemia and low lung compliance, with consequent acute respiratory distress syndrome (ARDS) and atelectasis [2]. ALI 
and ARDS are differentiated, according to the American-European Consensus Conference (AECC) criteria, on the basis of PaO2/FiO2, where 
ALI is defined as a PaO2/FiO2 ≤ 300 mmHg, whereas ARDS is a PaO2/FiO2 ≤ 200 mmHg [3]. The 2012 Berlin criteria has removed the term 
ALI, and has instead separated ARDS into grades of severity based on PaO2/FiO2 (Table 1) [4]. 

ARDS Severity PaO2/FiO2 (mmHg) Mortality (95% CI)
Mild 200 - 300 27% (24% - 30%)

Moderate 100 - 200 32% (29% - 34%)
Severe < 100 45% (42% - 48%)

Table 1: Categorization of Acute Respiratory Distress Syndrome 
according to the Berlin Criteria.
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ALI is highly prevalent, making up 7% of intensive care unit (ICU) admissions per annum. An American prospective study found an 
annual incidence of 78.9 patients per 100,000 [5]. Currently, the incidence of hospital-acquired ALI/ARDS appears to be decreasing. This 
may be due to improved ICU approaches [6]. However mortality rates of ALI/ARDS range between 27 - 45%, depending on its severity. 
The majority of deaths are related to the development of multi-organ failure (MOF) rather than primary respiratory failure [7]. 

Aetiology

There are both direct and indirect causes of ALI/ARDS with the commonest being sepsis, severe trauma, shock, pneumonia and gastric 
aspiration (Table 2). Less commonly, it can be caused by acute pancreatitis, transfusions, drug reactions, and fungal and parasitic infec-
tions. Sepsis is the biggest risk factor for ALI/ARDS whereas pneumonia (bacterial or viral) is the most common cause [8]. 

Direct Pulmonary Insults Indirect Pulmonary Insults
Airway Pneumonia Circulation Sepsis

Aspiration Shock
Trauma

Inhalation injury Major transfusions
Pancreatitis

Circulation Embolism (fat, amniotic fluid) Neurogenic Head trauma
Intracranial haemorrhage

Reperfusion injury Drug overdose (narcotics, sedatives, TCAs)

Table 2: Etiology of Acute Respiratory Distress Syndrome.

Pathology

ALI begins with an acute inflammation of the alveolar-capillary membrane, damaging pulmonary endothelial and epithelial cells. This 
increases the permeability of the membrane, causing an influx of fluid rich in inflammatory cells and mediators. This results in pulmonary 
oedema, increasing the risk of sepsis and impairing surfactant synthesis. Eventually, there is alveolar collapse [8,9]. Patients may gradu-
ally recover from this acute phase if the epithelium retains the ability to reabsorb the oedema [11]. In severe cases, progression to the 
fibroproliferative phase occurs. The alveoli become filled with mesenchymal cells and fibroblasts. These cells deposit collagen and induce 
neovascularization. Ultimately, the patient will develop clinical signs of fibrosis [12].

Neutrophils

Neutrophils, a type of short-lived polymorphonuclear granulocytes (PMNs), play an important role in innate immunity against bacte-
rial and fungal infections. They are quickly attracted to a site of infection, attracted by cytokines from activated host cells. They further 
enhance the immune response by recruiting and activating other immune cells. Neutrophils destroy pathogens through three different 
mechanisms: (a) phagocytosis and the production of reactive oxygen species (ROS); (b) degranulation and the release of antimicrobial 
proteins; and (c) the formation of neutrophil extracellular traps (NETs) [13]. NETs were discovered by Brinkmann et al in 2004. They 
are long chromatin filaments, consisting of either mitochondrial or nuclear DNA, that form web-like structures. These structures are 
coated with microbicidal histones and granular components. NETs are able to trap and kill extracellular pathogens by exposing them to 
high concentrations of antimicrobial proteins, including Neutrophil elastase, proteinase 3, histones, LL37, myeloperoxidase, lactoferrin, 
calprotectin (Table 3), which are helpful in preventing bacterial dissemination [14]. However, in certain clinical situations such as sepsis, 
they may also cause host tissue damages as listed in table 4 [15].
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Protein Role
Neutrophil Elastase Cleaves virulence factors

Proteinase 3 Cleaves virulence factors
Histones Damage cell membrane

LL37 Damage cell membrane
Myeloperoxidase Produces reactive oxygen species; necessary for Staphylococcus aureus eradication

Lactoferrin Binds iron; antifungal
Calprotectin Most important antifungal; effective against Candida albicans

Table 3: Antimicrobial properties of neutrophil extracellular traps.

Protein Role
Histones Histones have a high affinity for phosphate groups inside DNA and phospholipids, allowing them to inte-

grate into cell membranes and cause a large calcium influx. This results in endothelial damage, platelet 
aggregation, cytokine elevation, activation of the coagulation cascade (via interaction with factor XII), and 
NET formation [16,17].

Myeloperoxidase Produces ROS which have two effects: 

1. Epithelial cell injury, resulting in apoptosis or necrosis [18].

2. Promote further NETosis [19].
Neutrophil Elastase Damages endothelium by cleaving actin cytoskeleton, E-cadherin, and VE-cadherin; induces apoptosis of 

alveolar epithelial cells; promotes pro- inflammatory cytokine release [20].
Cathepsin G Activates pro-inflammatory proteins and degrades anti-inflammatory proteins [18].
Proteinase 3 Activates pro-inflammatory proteins and degrades anti-inflammatory proteins [18].
LL37 Presents cyotoxic and pro-apoptotic factors to endothelial and epithelial cells [21].

Table 4: Inflammatory properties of neutrophil extracellular traps.

NETosis

Activated neutrophils are able to undergo a unique process called NETosis to produce NETs. Neutrophil activation can be induced by 
a number of factors including activated platelets, thrombin, complement factor 5a (C5a) and lipopolysaccharide (LPS) [15]. Neutrophil 
activation causes the nuclear DNA to decondense and for the heterochromatin and euchromatin to mix. This process requires histone (H3) 
citrullination, which is catalysed by peptidylarginine deaminase 4 (PAD4) and is further mediated by neutrophil elastase (NE) and my-
eloperoxidase (MPO) (Table 5) [22,23]. Decondensation of the chromatin is followed by nuclear membrane rupture [24]. At this time, the 
cytoplasmic granules also rupture. The chromatin then mixes with the granular components [15]. Recognition of foreign bodies through 
neutrophil receptors causes cell membrane rupture, releasing the NETs [24]. Neutrophils that are missing NAPDH oxidase (PHOX), NE, 
MPO or PAD4 are unable to release NETs.

Factor Function
NADPH Oxidase Produces reactive oxygen species. NB: patients with chronic granulomatous disease are unable 

to produce NETs unless treated with H2O2 [19].
Neutrophil Elastase Mediates chromatin decondensation by degrading the linker histone H1 from core histones.

Myeloperoxidase Mediates chromatin decondensation.
Peptidylarginine Deaminase 4 Catalyzes histone H3 citrullination.

Table 5: Factors required for NETosis.



129

The Pathogenic Roles of Neutrophil Extracellular Traps (NETs) in Acute Lung Injury

Citation:  Guozheng Wang., et al. “The Pathogenic Roles of Neutrophil Extracellular Traps (NETs) in Acute Lung Injury”. EC Pulmonology 
and Respiratory Medicine 7.3 (2018): 126-137.

Neutrophils Target the Lungs

Although NETs play an important role in defense against pathogens, they are also involved in inflammation and tissue destruction 
(Table 3 and 4). The main components involved in host tissue damage are histones, MPO, NE and cathepsin G. The lungs are the main 
target for NETs because neutrophils spend an increased amount of time in the lungs [25]. Studies have shown a neutrophil concentra-
tion to be 80 to 100 times greater in pulmonary capillaries compared to the systemic circulation [26,27]. This has been explained by an 
increased transit time through the lung vasculature as neutrophils must first deform to pass through the smallest pulmonary capillaries 
[28-31]. During times of inflammation, neutrophils are activated which decreases their deformability [32]. This implies that priming by a 
systemic inflammatory insult such as sepsis stiffens these cells and traps, which marginates them in the pulmonary vasculature [33,34]. 
Margination does not immediately lead to ALI; a second insult is required to cause transmigration of neutrophils through capillaries into 
the pulmonary interstitium [35,36]. If this second insult does not occur, neutrophils will eventually de-prime and return to the systemic 
circulation [37-39].

Priming has multiple effects on neutrophil function; (a) enhanced respiratory burst activity, resulting in the formation of ROS [40]; (b) 
decreased deformability due to a change in the shape of neutrophils [41]; (c) shedding of the cell surface adhesion molecule L selectin 
(CD62L), increasing neutrophil rolling velocity against the endothelial surface; (d) upregulation of cell surface CD11b adhesion molecule, 
enhancing endothelial adhesion and migration into tissue [42]; and (e) inhibition of apoptosis [43]. These activated neutrophils induce 
vascular hyperpermeability via three mechanisms: (1) secretion of soluble factors such as tumor necrosis factor-alpha (TNF-alpha), 
thromboxane A2 (TXA2) and leukotriene A4 (LTA4) causing endothelial contraction [44,45]; (2) contact mediated mechanisms which 
damage endothelial adherence junctions [46]; and (3) the generation of ROS [35,47].

Furthermore, the production of NETs exposes lung tissue to a variety of cytokines, ROS, tissue-degrading proteinases and cationic 
polypeptides [48]. Inside the lungs, NETs promote endothelial and epithelial cell injury, resulting in increased endothelial permeabil-
ity. This is mediated by several molecules, including thrombin, C5a, VEGF, ROS, and platelets [49-52]. C5a, a NETosis induction factor, 
causes inflammation and vascular hyperpermeability via endothelial cell contraction. NETs can also trap platelets and cause thrombosis 
resulting in endothelial cell damage [4]. Thrombin itself mediates the release of vascular endothelial growth factor (VEGF) which also 
contributes to vascular hyperpermeability [51]. ROS released by NETs rapidly decrease endothelial cAMP content and increase vascular 
permeability [52]. The resolution of ALI/ARDS requires the reabsorption of alveolar oedema across the alveolar epithelium. This process 
is impaired because NET release of cytokines and oxidants induces apoptosis and necrosis of epithelial cells, causing defects in ion trans-
port mechanisms, preventing fluid reabsorption [11].

Sepsis-Induced ALI

Platelets appear to play an essential role in sepsis-induced ALI. In severe sepsis, LPS activates toll-like receptor 4 (TLR-4) on platelet 
cell surfaces, inducing their activation. These activated platelets bind to and activate neutrophils, triggering NETosis. Platelet-neutrophil 
adhesion results in the expression of inflammatory mediators and tissue-factor, resulting in neutrophil and leukocyte recruitment as well 
as fibrin deposition in the pulmonary vasculature, respectively [53-55]. Activated platelets can also bind NETs, resulting in platelet ag-
gregation. This promotes the formation of microvascular thrombi with subsequent pulmonary ischemia, damaging both endothelial and 
epithelial cells. Activated platelets also release alpha-granules and transforming growth factor-beta (TGF-B), inducing fibroproliferation 
[56]. Platelet depletion in a sepsis-model of ALI showed ameliorated gas exchange, reduced permeability, and reduced neutrophil accu-
mulation [16]. Aspirin has been shown to be effective in the prevention of ALI, decreasing the need for mechanical ventilation in septic 
patients [57-60].

Acid-Induced ALI

Acid-induced ALI occurs due to gastric aspiration. Platelets appear to be a major mediator of acid-induced ALI. Thromboxane A2 
(TXA2) has been found to be the main mediator of acid-induced lung injury. Platelet-neutrophil interactions produce TXA2 which  
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contributes to neutrophil recruitment and platelet-neutrophil aggregation (PNA). TXA2 also causes neutrophil adhesion to the endotheli-
um, causing endothelial cell contraction and increased permeability [56]. Adhesion and increased permeability allow neutrophils to enter 
the interstitium and undergo NETosis. Gastric aspiration induces P-selectin-dependent platelet-neutrophil interactions in lung capillaries. 
ALI development is halted when P-selectin is blocked or the amount of circulating platelets is decreased. Anti-P-selectin antibodies have 
shown a significant improvement in oxygenation, reduced neutrophil transmigration, and reduced protein leakage into bronchoalveolar 
lavage fluid (BALF) [11,56,61]. Drugs that act by inhibiting P-selectin and TXA2 are currently under development [11]. If successful, they 
may have major implications in the treatment of acid-induced lung injury.

Trauma/Shock-Induced ALI

Hypotensive shock can be triggered by trauma or elective surgical procedures despite adequate fluid resuscitation [3,62-65]. Within 
24 hours of the initial trauma, the patient is highly susceptible to lung injury on exposure to a secondary insult. Trauma patients often 
have a dramatically reduced ability to fight infection, making sepsis the most common secondary insult [66]. Extracellular histones are 
essential to the development of trauma-induced ALI. Large increases in extracellular histones have been noted in trauma patients. In a 
mouse model, infusion of histones of ultimately resulted in death [67]. It has been proposed that positively charged histones interact 
with negatively charged phospholipids in plasma membranes. By disrupting the membrane, histones induce a large calcium influx into 
the cell, damaging endothelial and epithelial cells as well as releasing preformed mediators from leukocytes. Histones also induce NETs 
which contain more histones, producing a vicious cycle of lung injury. They activate the coagulation cascade and induce platelet aggre-
gation, forming thrombi and furthering endothelial damage [17]. They also cause rapid and profound thrombocytopenia in mice [68]. 
Anti-histone antibodies have demonstrated decreased histone and NET toxicity both in vivo and in vitro. Activated protein C (APC) is 
responsible for cleaving histones however it has been ineffective in the treatment of major sepsis in humans [4,69]. As histones are the 
major components of NETs, which are essential to the development of ALI, it is reasonable to suspect that they may play an essential role 
in the development of ALI/ARDS. However, further research is required to determine whether this is true. If so, this will have major impli-
cations in the treatment of ALI/ARDS.

Transfusion-Related ALI (TRALI)

ALI most commonly develops within the first hour after the initiation of blood product transfusion and carries a 5 - 10% risk of mor-
tality [70,71]. Blood products containing anti-leukocyte antibodies or bioactive lipids are a second challenge on top of a primary condi-
tion, the most common being surgery, trauma or infection, that primes neutrophils. In a mouse model of TRALI, platelets were crucial 
to neutrophil sequestration and enhanced endothelial permeability [72]. They are activated by TLR4 and secrete TXA2, required for the 
formation of PNAs which mediate hyperpermeability [61,72,73]. Activated platelets also induce NET formation, which are involved in 
thrombus generation by platelet aggregation and activation of the coagulation cascade. This furthers endothelial dysfunction [15,73]. 
Aspirin has shown protective effects against NET production by inhibiting platelet aggregation in TRALI [15,16]. Neutrophil Fcγ receptor 
interaction with endothelial-bound MHC 1 monoclonal antibody (mAB) is also essential to neutrophil sequestration in the lungs. Mice that 
lack the Fcγ receptor do not develop MHC I mAB-mediated lung injury in vivo [72]. Further research is required to determine whether the 
Fcγ receptor will prove useful clinically. DNAse 1 inhalation has been shown to improve arterial oxygen saturation in TRALI by preventing 
antibody accumulation in the alveoli. Depletion of platelets and the neutrophil Fcγ receptor as well DNA degradation may all be implicated 
in the pharmacological treatment of TRALI. It would also be useful to study the role of histones in TRALI.

Pneumonia (Viral)-Related ALI

In a murine model of influenza pneumonitis, it was found that NETs are essential to the development of ARDS. In macrophage depleted 
mice, ARDS had 40% mortality. On histology, there was neutrophil recruitment with prominent NET formation. NETs were seen attached 
to the alveolar epithelium in areas of tissue damage. NET DNA fibers were seen attaching to the capillary endothelium to gain entry into 
the interstitium. There was a significant increase in T1a and thrombomodulin which are proteins normally present in alveolar type 1 and 
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endothelial cells, respectively, indicating host tissue damage. Interestingly, neutrophil depleted mice developed no signs of ARDS and had 
0% mortality. This indicates that the lack of macrophages is a trigger to neutrophil recruitment which is essential to the development of 
ARDS secondary to viral pneumonia [74]. DNAse may be implicated as a form of treatment in viral pneumonia-related ALI.

Treatment

Treatment for ALI/ARDS has been extensively studied. To date, the only effective approaches that have been established are prone 
positioning and positive-pressure mechanical ventilation (PPV) [75,76]. The ARDS Network randomized controlled trial found that using 
a low tidal volume of 6mL/kg is lung protective, preventing barotrauma and epithelial injury [77,78]. This reduces damage to the alve-
olar-capillary membrane and thus decreases pulmonary oedema. It also downregulates mechanosensitive pro-inflammatory pathways, 
reducing neutrophil accumulation in the alveoli [78]. On the contrary, mechanical ventilation at high tidal volumes is a well-known cause 
of ventilator-induced lung injury [79]. It causes barotrauma, resulting in increased protein and cytokine leakage into the lung, hyaline 
membrane formation, and increased neutrophil sequestration [80]. Within the past decade, lung protective PPV has reduced the mortality 
of ALI/ARDS significantly, however an observational study in Spain employing this method still reported a mortality of 47.8%, indicating 
the need for novel treatment strategies [81].

There is little evidence base around the pharmacological treatment of ALI/ARDS. Several drugs have been tested but failed to pro-
duce any clinical benefit. Beta-2 agonists and glucocorticoids have shown some efficacy in rodents but no effect in humans [82-86]. 
APC, GM-CSF, surfactant protein C-based agents, nitric oxide and antioxidants such as N-acetylcysteine have been found to be ineffective 
[47,84,85,87-91]. Eritoran, an LPS-TLR4 binding inhibitor has been shown to reduce pulmonary inflammation in LPS exposed lungs 
[92,93] and in a phase II clinical trial, it further reduced mortality [94]. However, a multicentre phase III trial found no impact in sepsis-
related ALI/ARDS [95].

Conclusions
Accumulated evidence strongly indicates that NETs formation plays a very important role in many types of ALI, including transfusion-

related ALI and ARDS caused by infection. 

Future Studies
Several therapeutic targets in the treatment of ALI/ARDS have been implicated (Table 6). To note, it may be useful to focus on the 

deceleration of ARDS rather on reversing severe injury [35]. Before any of these approaches can be used in humans, further research is 
required on their efficacy. Lastly, a truly successful pharmacological approach would be able to target all causes of ALI. It must therefore 
target a crucial part of NETs which would be present in all forms of ALI. However, the significance of each NET component in the different 
types of lung injury, is not completely understood as of yet.

Target Role Evidence
Extracellular 

histones
Major component of NETs causing epithelial and 

endothelial injury
Anti-H4 and anti-H2A antibodies reduce vascular  

permeability and lung oedema and reverse coagulation 
activation [16].

Platelets Pro-thrombotic. Aspirin prevents NET formation in transfusion-related 
lung injury, acid-induced lung injury and sepsis-induced 
lung injury by inhibiting platelet activation, preventing 

both  
aggregation and platelet-neutrophil interaction [96,97].

DNA Major component of NETs DNAse1 degrades NET-derived structures, reducing  
mortality in a murine model [16].

Complement 
factor 5a

Potent anaphylatoxin, promotes NET formation 
and extracellular histone release

Infliximab-1 is protective in viral pneumonia [66].  
Neutralization of C5a with eculizumab or absence of  

receptors is protective in sepsis [50].
Transforming 
growth factor 

Beta

Released by NET-induced platelets, causing  
proliferation and chemotaxis of fibroblasts and  
local transformation into myofibroblasts which 
then produce extracellular matrix components,  
resulting in fibrosis in the later stages of lung 

injury.

No published studies.

Neutrophil 
elastase

Required for NETosis Inhibitors have been approved in Japan and South Korea

Spingosine-
1-phosphate

Maintain endothelial barrier function. Intratracheal and intravenous delivery of agonist reduces 
lung permeability after lipopolysaccharide injection [98].

Tyrosine 
kinase

Enzyme responsible for phosphorylation of cellular 
proteins

Imatinib, an inhibitor, is protective against endothelial 
dysfunction and pulmonary oedema evoked by thrombin, 

vascular endothelial growth factor, or sepsis [16].
HMG-CoA 
reductase

Catalyzes conversion of mevalonate to cholesterol Simvastatin has shown positive anti-inflammatory effects 
in a randomized controlled trial on patients with  

established acute lung injury [99].

Table 6: Potential pharmacological targets in Acute Lung Injury/Acute Respiratory Distress Syndrome.
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Other important targets are anti-histone antibodies, aspirin, and DNAse. Histones have been proven to play a major role in trauma-
associated ALI. Since they are the major toxic components of NETs, it is likely that they play an essential role in all forms of ALI, and there-
fore may have significant implications in the pharmacological treatment of ALI/ARDS. Platelets appear to play an essential role in septic, 
acid-induced, and transfusion-related lung injury. Aspirin has been proven to be effective in certain clinical scenarios. Interestingly, extra-
cellular histones induce platelet aggregation and rapid thrombocytopenia, however this decrease in systemic platelets does not prevent 
lung injury. Therefore, the method of aspirin administration in ALI is important. DNA is the central component of NETs and is very toxic to 
host cells. It can tangle to produce extracellular webs which obstruct blood flow and produce patches of ischemia within the vasculature. 
DNAse would therefore break apart NETs and prevent major tissue damage.
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