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Abstract
This research note proposes a new type of sensory discrimination forced-choice methods, i.e. the paired specified ‘M+N’ with 

different (AB and BA) pairs. Noreen’s 4I2AFC area theorem in signal detection theory is originally demonstrated and extended. An 
analytical expression of a general psychometric function for the new type of methods is derived from the extension of the 4I2AFC area 
theorem. The performances of the new type of methods in both difference testing and similarity/equivalence testing are explored. It 
shows that the new type of methods is more powerful than the conventional methods. 

Keywords: Signal Detection Theory (SDT); Thurstonian Modeling; Specified ‘M+N’; Paired Specified ‘M+N’; Psychometric Function; 
4I2AFC Area Theorem 

Introduction
There are three main objectives for this paper. One is to propose and explore a new type of sensory discrimination forced-choice 

methods, i.e., the paired specified ‘M+N’ with different (AB and BA) pairs. The second is to demonstrate and extend an “Area Theorem” 
proposed by Noreen [1] in signal detection theory. The third objective is to derive an analytical expression of a general psychometric func-
tion for the new type of methods.

This paper can be regarded as a generalization of a recent paper, Bi and Kuesten [2] in which the 4I2AFC as a special situation of the 
paired specified ‘M+N’ with different (AB and BA) pairs (M=N=1) is explored. 

This paper can also be viewed as a companion to the two recent papers, Bi [3] and Bi, Kuesten, Lee, and O’Mahony [4]. Bi [3] originally 
derived an analytical expression of a general psychometric function for the specified ‘M+N’ methods, based on an extension of Green’s 
2-AFC area theorem in signal detection theory [5,6]. Bi, Kuesten, Lee, and O’Mahony [4] originally derived an analytical expression of a 
general psychometric function for a paired version of the specified ‘M+N’ with same (AA or BB) and different (AB or BA) pairs, based on an 
extension of the same-different area theorem proposed by Noreen [1] and demonstrated independently by Irwin, Hautus, and Butcher [7], 
Micheyl and Dai [8] and Bi, Kuesten, Lee, and O’Mahony [4]. The current paper will derive originally an analytical expression of a general 
psychometric function for another paired version of the specified ‘M+N’, i.e. the paired specified ‘M+N’ with different (AB and BA) pairs, 
based on an extension of the 4I2AFC area theorem proposed also by Noreen [1]. 

The current paper and our recently published papers mentioned above discuss three types of sensory discrimination forced-choice 
methods, i.e. the specified ‘M+N’ and two paired versions of the specified ‘M+N’; demonstrate and extend three profound area theorems in 
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signal detection theory, i.e. Green’s 2-AFC area theorem, Noreen’s same-different area theorem, and Noreen’s 4I2AFC area theorem; and 
derive originally three general psychometric functions for the three types of methods. A common motivation of these papers is to establish 
a theoretical structure to generalize the sensory discrimination forced-choice methods. 

Review of the specified ‘M+N’ and paired versions of the specified ‘M+N’ methods

As discussed in Bi, Lee, and O’Mahony[9] almost all the sensory discrimination forced-choice methods can be generalized in the ‘M+N’ 
framework. There are specified and unspecified versions of the ‘M+N’ methods. In the specified version, the characteristics of the samples 
are identified. In the unspecified version, the samples are sorted without being identified. We discuss only the specified ‘M+N’ in this 
paper.

There are also paired versions of the specified ‘M+N’, in which a pair of stimulus presentations is used as a single perceptual event. Bi, 
Kuesten, Lee, and O’Mahony [4] discussed a paired version of the specified ‘M+N’ with same (AA or BB) and different (AB or BA) sample 
pairs. The dual-pair (4IAX) [1,10,11] which is the paired 2-AFC, is a special case of the specified ‘M+N’ with one same (AA or BB) and one 
different (AB or BA) pairs (M=N=1). This paper discusses another paired version, i.e., the specified ‘M+N’ with different (AB and BA) pairs. 

In a paired specified ‘M+N’ with different (AB and BA) pairs, M BA pairs and N AB pairs are presented simultaneously to a subject. The 
task of the subject is to select the N AB pairs, where A is a signal or a stronger stimulus, B is noise or a weaker stimulus, and AB is a pair 
with decreasing stimuli change. The 4I2AFC [1,2,10], which is the paired 2-AFC with different (AB and BA) pairs, is a special case of this 
paired version of the specified ‘M+N’ with one AB pair and one BA pair (M=N=1).

All the specified ‘M+N’ and the paired versions of the specified ‘M+N’ are forced-choice methods without response bias or with less 
response bias than non-forced-choice methods. Table 1 of this paper lists the names of some specific specified ‘M+N’ and paired versions 
of the specified ‘M+N’ methods with smaller M and N.

M, N Specified ‘M+N’* Paired specified ‘M+N’ (with same (AA 
or BB) and different (AB or BA) pairs)**

Paired specified ‘M+N’ with different  
(AB and BA) pairs***

M=N=1 2-AFC Paired 2-AFC (4IAX) Paired 2-AFC with different (AB and BA) pairs 
(4I2AFC)

M=2, N=1 3-AFC Paired 3-AFC Paired 3-AFC with different (AB and BA) pairs

M=N=2 Specified tetrad Paired specified tetrad Paired specified tetrad with different (AB and 
BA) pairs

M=3, N=1 4-AFC Paired 4-AFC Paired 4-AFC with different (AB and BA) pairs

M=3, N=2 Specified ‘two-out-of-five Paired specified ‘two-out-of-five Paired specified ‘two-out-of-five with different 
(AB and BA) pairs

M=N=3 Specified hexagon Paired specified hexagon Paired specified hexagon with different (AB and 
BA) pairs

M=N=4 Specified octad Paired specified octad Paired specified octad with different (AB and 
BA) pairs

Table 1: Names of Some Specific Specified ‘M+N’ and Paired Versions of the Specified ‘M+N’ Methods 

Note: *M and N are the numbers of noise and signal, respectively; 
** M and N are the numbers of same pair and different pair, respectively; 
*** M and N are the numbers of BA pair and AB pair, respectively.
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The 4I2AFC area theorem and its extension
The 4I2AFC area theorem

In the literature of mathematical psychology, Noreen [1] proposed, without a strict demonstration, an analogous “Area Theorem” to 
Green’s 2-AFC area theorem. It is referred to as the 4I2AFC area theorem. The theorem suggests that if a pair of stimulus presentations 
is treated as a single perceptual event, the stimulus pair AB can be used as a ‘signal’ and pair BA can be used as a ‘noise’ in a yes-no or A-
Not A paradigm. Then, the area under the ROC curve (AUC) of the yes-no paradigm should equal the probability of correct responses (Pc) 
of the four-interval, two-alternative forced-choice (4I2AFC) task. This is the so-called Noreen’s 4I2AFC area theorem, which is originally 
demonstrated in Appendix A.1 of this paper as in Equation (1):

                                          (1)

where Φ() denotes a cumulative distribution function of the standard normal distribution and Pc=Φ(δ) is a psychometric function of 
the 4I2AFC [2]. 

The importance of the area theorem is that it reveals the inherent relationship between a method with response bias and a forced-
choice method without response bias or with less response bias than non-forced-choice methods. 

An extension of the 4I2AFC area theorem

Noreen’s 4I2AFC area theorem can be extended to link the AUC and Pc of all the paired specified ‘M+N’ with different (AB and BA) pairs. 
Equation (2) is derived originally in Appendix A.2 of this paper. 

			                                                     

where ϕ()  is the density function of the standard normal distribution. 

It means that for a ROC curve with a hit probability H’=HN and a false-alarm probability F’=1-(1-F)M, the area under the ROC curve (AUC) 
is in Equation (2), where H and F are the hit and false-alarm probabilities of the yes-no paradigm with pair AB as a ‘signal’ and pair BA as 
a ’noise’. It can be demonstrated that Equation (2) becomes Equation (1) when M=N=1 (See, Appendix A.1). It is AUC=Pc for the 4I2AFC. 

However, except for the 4I2AFC, so far, there is no an analytical expression of the psychometric function for the paired specified ‘M+N’ 
with different (AB and BA) pairs in the literature. It can be demonstrated by simulation in the next section of this paper that the right-part 
of Equation (2) equals the Pc of the paired specified ‘M+N’ with different (AB and BA) pairs. 

Simulation-derived psychometric function for the paired specified ‘M+N’ with different (AB and BA) pairs

We can produce a simulation-derived psychometric function for the paired specified ‘M+N’ with different (AB and BA) pairs for any 
specific M and N, using a method similar as that in Bi, Lee, and O’Mahony [9]. 

For example, for the paired specified two-out-of-five (‘M+N’ with M=3, N=2) with different (AB and BA) pairs, 10,000 sets (x1, x2, x3, 
y1, y2) of random numbers are drawn from a normal distribution with mean -d’ and standard deviation √2, i.e., X~N(-d’,√2), and a normal 
distribution with mean d’ and standard deviation √2, i.e., Y~N(d’,√2), respectively. A correct response will be made if max (x1, x2, x3) < 
min (y1, y2). The probability of correct responses in the 10,000 sets of samples can be observed. For 41 values of  d’ from 0 to 4 with a 
step of 0.1, we can obtain the 41 corresponding Pc values. With the 41 sets of the Pc and d’ values, a simulated psychometric function can 
be established by using the R built-in program ‘smooth.spline’. The R code ‘sfmnabba(m,n)’ for the simulated psychometric function is 
available from Appendix B in this paper. 

 (2)
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For any given m (M=m) and n (N=n) as input of the R code ‘sfmnabba(m,n)’, a simulation-derived psychometric function for the paired 
specified ‘M+N’ with different (AB and BA) pairs can be produced as below for 5 specific paired specified ‘M+N’ with different (AB and 
BA) pairs methods. 

> sfmnabba11<-sfmnabba(1,1)

> sfmnabba21<-sfmnabba(2,1)

> sfmnabba31<-sfmnabba(3,1)

> sfmnabba22<-sfmnabba(2,2)

> sfmnabba32<-sfmnabba(3,2)

For any given d’ value(s), the simulated Pc value(s) can be obtained by using the simulation-derived psychometric function and an R 
built-in program ‘predict’. For example, for the paired 3-AFC with different (AB and BA) pairs (M=2, N=1), for d’ = 0, 0.5, 1, 1.5, and 2, the 
simulated Pc values are 0.3333, 0.5449, 0.7442, 0.8861 and 0.9595, respectively. The AUC values based on Equation (2) are 0.3333, 0.5462, 
0.7452, 0.8847, and 0.9586, respectively, by using the R code ‘pmnabba’ for M=2 and N=1. 

> predict(sfmnabba21,seq(0,2,0.5))$y

[1] 0.3334645 0.5448578 0.7444223 0.8861241 0.9594556

> pmnabba(2,1,seq(0,2,0.5))

[1] 0.3333 0.5462 0.7452 0.8847 0.9586

Figure 1 shows the analytical AUC values based on Equation (2) and the simulated Pc values based on the simulation-derived psycho-
metric functions for some paired specified ‘M+N’ with different (AB and BA) pairs for some specific M and N values. It shows a very good 
consistency between the AUC values and the Pc values. 

Figure 1: Area under ROC Curve and Proportion of Correct Responses (Pc ) of each of some  
Methods of the Paired Specified ‘M+N’ with different (AB and BA) Pairs
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Analytical general psychometric function of the paired specified ‘M+N’ with different (AB and BA) pairs

The equivalence between the simulated  and the AUC values suggests that the analytical expression in Equation (2) for AUC can be used 
as a psychometric function in Equation (3) for the paired specified ‘M+N’ with different (AB and BA) pairs. 

The psychometric function in Equation (3) has been demonstrated analytically for the 4I2AFC with M=N=1. It has been demonstrated 
by simulations for some methods of the paired specified ‘M+N’ with different (AB and BA) pairs with specific M and N values. 

With the psychometric function in Equation (3), the Pc value(s) can be estimated for given  δ or d’ value(s) and for any given specific M 
and N values by using the R code ‘pmnabba(m,n,d)’. For example, for the paired 3-AFC with different (AB and BA) pairs (M=2, N=1), for δ 
=1 and 2, the corresponding Pc values are 0.7452 and 0.9586, respectively. For observed  Pc value(s), the corresponding δ or d’ value(s) can 
also be estimated from Equation (3) by using the R code ‘qmnabba(m,n, pp)’. For example, for the paired 3-AFC with different (AB and BA) 
pairs (M=2, N=1), for observed Pc values = 0.7452 and 0.9586, the estimated δ or d’ values are 1 and 2 as below. 

> pmnabba(2,1,c(1,2))

[1] 0.7452 0.9586

> qmnabba(2,1,c(0.7452,0.9586))

[1] 1 2

Estimation of variance of d’ is often needed to measure precision of the estimated parameter δ and is used in statistical inference for 
d’. As described by Bi, Ennis, and O’Mahony [12] variance of d’ for a forced-choice method is composed of two components: sample size 
N and the B-value, which is determined solely by the method used. A general form of variance of d’ for a forced choice method can be 
expressed as Var(d’) = B/N. The B-value can be obtained from B=pc (1-pc)/f’2 (d0’) , where f denotes a psychometric function for a method 
and f’(d0’) denotes the derivative of the function f(d’) evaluated at d0’ . For the paired specified ‘M+N’ with different (AB and BA) pairs, f is 
in Equation (3) and f’(d0’) is in Equation (4). 

The R code ‘bmnabba(m,n,dd)’ can be used to estimate the B-values and the variance of d’. For example, for the paired 3-AFC with dif-
ferent (AB and BA) pairs (M=2, N=1), if the estimated d’ values are 1 and 2, the estimated B-values are 1.5720 and 4.4364, respectively. If 
the sample size is 100, then the variances of the estimated d’ values are 0.0157 and 0.0444, respectively. 

> bmnabba(2,1,c(1,2))

[1] 1.572020 4.436424

Performance of the paired specified ‘M+N’ with different (AB and BA) pairs in difference testing 
Difference testing power

For calculation of difference testing power for a forced-choice method, see, e.g. Ennis [13], Ennis and Jesionka [14] and Bi [15]. For 
example, for d’= 0, the corresponding proportion of correct responses for the paired 3-AFC with different (AB and BA) pairs is Pc0 = 1/3. 
For an assumed true difference in terms of δ or d’, e.g., d1’ = 0.5, the corresponding proportion of correct responses for the method is pc1= 
0.5462, based on the psychometric function in Equation (3) for M=2, N=1. 

The power of a difference test is the probability to correctly reject the null hypothesis H0 when H0 is false and an alternative hypothesis  
H1 is assumed. The power of the difference test with the null hypothesis H0: d0’ = 0 against the alternative hypothesis H1 : d1’ = 0.5 is in fact 
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the power of a one-sample binomial test with the null hypothesis H0: Pc=Pc0 = 1/3 against the alternative hypothesis H1: Pc=pc1 = 0.5462. 
For a given sample size, e.g. n = 50, Type I error α = 0.05, the power of difference testing using the paired 3-AFC with different (AB and BA) 
pairs can be calculated by using the built-in S-Plus program binomial.sample.size [16] or an R code ‘powf’ in Appendix B of this paper for 
a one-sample test of binomial proportion as below. The power is about 0.93 in this case. 

> binomial.sample.size(p = pmnabba(2, 1, 0), p.alt = pmnabba(2, 1, 0.5), alternative = “great”, n1 = 50, correct = F)$power

[1] 0.9287289

> powf(p0=pmnabba(2,1,0),p1=pmnabba(2,1,0.5),alpha=0.05,n=50)

[1] 0.93

> pmnabba(2, 1, 0)

[1] 0.3333

> pmnabba(2, 1, 0.5)

[1] 0.5462

Power comparisons 

Difference testing powers of the following 5 specific methods of the paired specified ‘M+N’ with different (AB and BA) pairs are com-
pared.

M1N1: Paired 2-AFC with different (AB and BA) pairs (4I2AFC)

M2N1: Paired 3-AFC with different (AB and BA) pairs

M3N1: Paired 4-AFC with different (AB and BA) pairs

M2N2: Paired specified tetrad with different (AB and BA) pairs

M3N2: Paired specified two-out-of-five with different (AB and BA) pairs 

Figure 2 presents the five power curves plotting the powers against d’ from 0.1 to 1 with sample size n = 30. It shows that the paired 
specified tetrad with different (AB and BA) pairs (M2N2) and the paired specified two-out-of-five with different (AB and BA) pairs (M3N2) 
are the most powerful among the five methods while the 4I2AFC (M1N1) has the lowest difference testing power in difference testing. 

It should be mentioned that the conclusion that the new type of methods with larger M and N have larger testing powers is based solely 
on theoretical derivation and computer simulations. Considering that a larger number of samples in a method may involve more adapta-
tion and fatigue, the actual operational power may be lower than that theoretical or simulated results suggest.

It is noted that power comparisons have been conducted between the 4I2AFC and the conventional methods in Bi and Kuesten [2]. The 
results show that the 4I2AFC is more powerful than the conventional ones. Hence, Figure 2 suggests that the paired specified ‘M+N’ with 
different (AB and BA) pairs are more powerful than the conventional methods in difference testing. 

Performance of the paired specified ‘M+N’ with different (AB and BA) pairs in similarity/equivalence testing
Similarity/equivalence testing power

For similarity/equivalence testing power using a forced-choice method, see, e.g. Bi [15,17]. The power of the similarity test in this situ-
ation is in fact the power of a one-sample binomial test with the null hypothesis H0: Pc=pc0 against the alternative hypothesis H1: Pc=pc1<pc0, 
where pc0 and pc1 correspond to d’0 and d’1, respectively. 

For example, consider the paired 3-AFC with different (AB and BA) pairs. The power of a similarity test is about 0.76 if d’0= 1 is a given 
similarity limit and the true difference is assumed to be d’1= 0.8, i.e., pc0 = 0.745 and pc1= 0.671, and is based on a given sample size, e.g., n 
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Figure 2: Difference Testing Powers for the Paired Specified ‘M+N’ with different (AB and BA) Pairs.
Note:
tetrad (psd): Paired specified tetrad with different (AB and BA) pairs (M2N2).
2-out-of-5 (psd): Paired specified Two-out-of-five with different (AB and BA) pairs (M3N2).
4-AFC (pd): Paired 4-AFC with different (AB and BA) pairs (M3N1).
3-AFC (pd): Paired 3-AFC with different (AB and BA) pairs (M2N1).
4I2AFC: Paired 2-AFC with different (AB and BA) pairs (M1N1).

= 200, Type I error α = 0.05. The power may be determined using the built-in S-Plus program binomial.sample.size or an R code ‘powf’ in 
Appendix B as below. 

> binomial.sample.size(p = pmnabba(2,1,1), p.alt = pmnabba(2,1,0.8), alternative = “less”, n1 = 200, correct = F)$power

[1] 0.7604942

> powf(p0=pmnabba(2,1,1),p1=pmnabba(2,1,0.8),alpha=0.05,n=200)

[1] 0.76

> pmnabba(2,1,1)

[1] 0.7452

> pmnabba(2,1,0.8)

[1] 0.671



11

Noreen’s 4I2AFC Area Theorem and its Extension

Citation: Jian Bi and Carla Kuesten. “Noreen’s 4I2AFC Area Theorem and its Extension”. EC Psychology and Psychiatry 8.11 (2019): 04-20.

Power comparisons 

Similarity testing powers of the following 5 specific methods of the paired specified ‘M+N’ with different (AB and BA) pairs are com-
pared: the paired 2-AFC with different (AB and BA) pairs (4I2AFC) (M1N1), the paired 3-AFC with different (AB and BA) pairs (M2N1), 
the paired 4-AFC with different (AB and BA) pairs (M3N1), the paired specified tetrad with different (AB and BA) pairs (M2N2), and the 
paired specified two-out-of-five with different (AB and BA) pairs (M3N2). 

Figure 3 presents the five power curves plotting the powers against δ or d’ from 0.5 to 1 with sample size n=100 and a similarity limit δ 
or d’= 1. It shows that the paired specified two-out-of-five with different (AB and BA) pairs (M3N2) is the most powerful while the 4I2AFC 
(M1N1) is the least powerful among the 5 methods in similarity testing. 

It is noted that similarity testing power comparisons have been conducted between the 4I2AFC and the conventional methods in Bi 
and Kuesten [2]. The results show that the 4I2AFC is more powerful than the conventional ones. Hence, Figure 3 suggests that the paired 
specified ‘M+N’ with different (AB and BA) pairs are more powerful than the conventional methods in similarity testing. 

Figure 3: Similarity/Equivalence Testing Powers for the Paired Specified ‘M+N’ with Different (AB and BA) Pairs.
Note:
2-out-of-5 (psd): Paired specified two-out-of-five with different (AB and BA) pairs (M3N2).
tetrad (psd): Paired specified tetrad with different (AB and BA) pairs (M2N2).
4-AFC (pd): Paired 4-AFC with different (AB and BA) pairs (M3N1).
3-AFC (pd): Paired 3-AFC with different (AB and BA) pairs (M2N1).
4I2AFC: Paired 2-AFC with different (AB and BA) pairs (M1N1).
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Concluding Remarks
The new type of methods, i.e. the paired specified ‘M+N’ with different (AB and BA) pairs proposed and explored in this paper, have 

potential wide application perspective. It is particularly applicable to assessment of before-after treatment effects for visual or manual 
inspection of food or non-food products. A comprehensive case study using the 4I2AFC method for the facial images was conducted in 
a recent paper [2]. Another industrial application of the new type of methods is in progress and will appear in a separate applied paper. 

This paper makes two novel theoretical contributions to signal detection theory (SDT) and Thurstonian modeling. One is to demon-
strate originally Noreen’s 4I2AFC area theorem [1] and extend it to link the area under ROC curve (AUC) with the probability of correct 
responses (Pc) of each of the methods of the paired specified ‘M+N’ with different (AB and BA) pairs. Another contribution is to derive 
originally an analytical expression of a general psychometric function for the paired specified ‘M+N’ with different (AB and BA) pairs. 

So far, we have generalized three types of sensory discrimination forced-choice methods, i.e. the specified ‘M+N’ and two versions of 
the specified ‘M+N’. The three types of the methods and their theoretical structures for generalization are listed in Table 2. We believe that 
the key findings are fundamental to sensory analysis methodology and sensory science. 

It is noted that this paper and our recently published papers do not touch the unspecified version of the ‘M+N’. The conventional un-
specified ‘M+N’ contains the triangle (M=2, N=1), the m-alternative oddity [18] where m > 3, M=m-1 and N=1, the unspecified tetrads [19] 
where M=N=2, the unspecified hexagon (M=N=3), the unspecified octad (M=N=4), etc. as its specific situations.

We are curious whether the unspecified ‘M+N’ can also be extended to the paired versions and whether the unspecified ‘M+N’ and 
its paired versions can also be generalized in some ways. Extending the unspecified ‘M+N’ to the paired versions, exploring the paired 
versions of the unspecified ‘M+N’, and generalizing the unspecified ‘M+N’ and its paired versions might be interesting topics of further 
research.

Type of methods General psychometric functions Associated area theorems

The specified ‘M+N’* Extension of Green’s 2-AFC area 
theorem

The paired specified ‘M+N’ (with same 
and different pairs)**

Extension of Noreen’s same-different 
area theorem

The paired specified ‘M+N’ with  
different (AB and BA) pairs***

Extension of Noreen’s 4I2AFC area 
theorem

Table 2: Theoretical Structure of the Specified ‘M+N’ and Paired Versions of the Specified ‘M+N’ Methods 
Note: *Bi [3]. **Bi, Kuesten, Lee, & O’Mahony [4]. ***This paper.

Appendix A: Demonstrations of Noreen’s 4I2AFC area theorem (1981) and its extension

A.1. Proof of Noreen’s 4I2AFC area theorem 

The ROC curve is a plot of hit (H) proportions versus false-alarm (F) proportions. It shows the relationship between the two probabili-
ties as the decision criterion varies. The ROC curve can be expressed as ROC=H(F), i.e. H is a function of F.
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A.1.1. ROC curve of YN with pair AB as a signal and pair BA as a noise 

It is noted that the yes-no (YN) paradigm may represent the A-Not A method in the sensory field. The hit probability (H) in the YN 
paradigm is the probability of response “A” when sample A (signal) is presented, i.e. P(“A”|A). The false-alarm probability (F) in the YN 
paradigm is the probability of response “A” when sample Not A (noise) is presented, i.e., P(“A”|N). F is also a complement of the probabil-
ity of correct rejection, i.e., F= 1-Probability of correct rejection, i.e. P(“N”|N). H is also a complement of the probability of miss, i.e., H=1-
Probability of miss, where the probability of miss is the probability of response “N” when sample A (signal) is presented, i.e., P(“N”|A). The 
probability of correct responses in the YN paradigm includes both the hit probability and the probability of correct rejection. 

The hit probability in the YN paradigm is the probability of Y> c for pair AB (signal), i.e., P(Y>c|s), where c is a criterion and Y denotes  
a sensation. The false-alarm probability in the YN paradigm is the probability of  Y >c for pair BA (noise), i.e. P(Y>c|n) . It is usually as-
sumed that the sensation for the AB pair and the sensation for the BA pair follow normal distributions with standard deviation √2 and 
mean δ and -δ, respectively, i.e., ., Y~N(δ,√2) for the AB pair and Y~N(-δ,√2)  for the BA pair. Hence the hit and false-alarm probabilities 
are Equations (A1) and (A2), respectively. 

where Φ(.) denotes a cumulative distribution function of the standard normal distribution.

From Equation (A2), c=√2 Φ-1 (1-F)-δ, where Φ-1 (.) denotes the inverse standard normal transform. Hence, the ROC curve function for 
the YN with pair AB as a signal and pair BA as a noise should be Equation (A3).

A.1.2. The area under the ROC curve (AUC)

The area under the ROC curve (AUC) can be calculated in Eq. (A4) ([20], p47).
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Appendix B:  R codes used in this paper

No. Code
1 ‘sfmnabba(m,n)’
2 ‘pmnabba(m,n,d)’
3 ‘qmnabba(m,n,p)’
4 ‘bmnabba(m,n,d)
5 ‘powf(p0,p1,alpha,n)’

#1

sfmnabba<-function(m, n)

{

#simulated psychometric functions for paired specified ‘M+N’ with AB and BA

###################

MNpair<-function(m,n,dd){

k<-length(dd)

#########

mnpair<-function(m,n,d)

{b <- 10000

dd1 <- rep(0, b)

for(i in 1:b) {

It is demonstrated originally and analytically that the area under the ROC curve (AUC) of a YN paradigm with AB pair as a signal and BA 
pair as a noise equals the proportion of the correct responses (Pc) in the 4I2AFC for the same stimuli as suggested by Noreen [1]. 

A.2. An extension of the 4I2AFC area theorem

Let  H’=HN=Φ(δ-c/√2)N and , F’=1-(1-F)M=1-Φ(c+δ/√2)M, then the AUC, i.e. the area under the ROC curve with the hit probability H’ and the 
false-alarm probability F’ is in Equation (A10).

where x=c/√2. Let y= x-δ/√2, Eq. (A10) can be expressed as (A11).

Equation (A11) can also be expressed as Equation (A12).
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s <- (rnorm(n, d, sqrt(2)))

w <-(rnorm(m, -d, sqrt(2)))

if(min(s) > max(w)) {

dd1[i] <- 1

}

}

dd2 <- rep(0, b)

for(i in 1:b) {

s <- (rnorm(n, d, sqrt(2)))

w <-(rnorm(m, -d, sqrt(2)))

if(min(s) > max(w)) {

dd2[i] <- 1

}

}

dd<-c(dd1,dd2)

pc <- sum(dd)/(2*b)

pc

}

##############

pp<-dd

for(i in 1:k){pp[i]<-mnpair(m,n,dd[i])}

pp<-round(pp,4)

pp

}

################

mnptab <- function(m, n)

{

#pcdp tab

dd <- seq(0, 4, 0.1)

k <- length(dd)
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pp<-MNpair(m,n,dd)

dp <- cbind(dd, pp)

dimnames(dp)[[2]] <- c(“d’”, “pc”)

dp

}

################

tab <- mnptab(m, n)

dpf <- smooth.spline(tab[, 1], tab[, 2])

dpf

}

#2

pmnabba<-function(m,n,d){

#Pc of paired specified ‘M+N’ with AB and BA

pcf<-function(m,n,d){

ff<-function(x,n,m,d){mm<-pnorm(x+sqrt(2)*d)^m*(1-pnorm(x))^(n-1)*dnorm(x)

mm}

pc<-integrate(ff, -99, 99,n=n,m=m,d=d)

pc<-n*pc[[1]]

pc}

k<-length(d)

pp<-rep(0,k)

for(i in 1:k){pp[i]<-pcf(m,n,d[i])}

pp<-round(pp,4)

pp

}

#3

qmnabba<-function(m,n,pp){

#d’ paired specified ‘M+N’ with AB and BA

pdf<-function(m,n,p){

pcdf<-function(d,m,n,p){
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ff<-function(x,n,m,d){mm<-pnorm(x+sqrt(2)*d)^m*(1-pnorm(x))^(n-1)*dnorm(x)

mm}

pc<-integrate(ff, -99, 99,n=n,m=m,d=d)

pc<-n*pc[[1]]

pc-p}

delta<-uniroot(pcdf,interval=c(0,10),m=m,n=n,p=p)

del<-round(delta[[1]],2)

del}

k<-length(pp)

dd<-rep(0,k)

for(i in 1:k){dd[i]<-pdf(m,n,pp[i])}

dd<-round(dd,4)

dd

}

#4

bmnabba<-function(m,n,dd){

#for B values for paired specified ‘M+N’ with ab and BA

##########

pc4i2afc0<-function(m,n,d){

#Pc of 4I2AFC

pcf<-function(m,n,d){

ff<-function(x,n,m,d){mm<-pnorm(x+sqrt(2)*d)^m*(1-pnorm(x))^(n-1)*dnorm(x)

mm}

pc<-integrate(ff, -99, 99,n=n,m=m,d=d)[[1]]

pc<-n*pc

pc}

k<-length(d)

pp<-rep(0,k)

for(i in 1:k){pp[i]<-pcf(m,n,d[i])}

pp<-round(pp,4)
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pp

}

#########

pp<-pc4i2afc0(m,n,dd)

bb<-dd

k<-length(dd)

############

bf<-function(m,n,d,p){

dpf<-function(x,m,n,d){

dp<-sqrt(2)*m*n*pnorm(x+sqrt(2)*d)^(m-1)*pnorm(-x)^(n-1)*dnorm(x+sqrt(2)*d)*dnorm(x)

dp

}

dpc<-integrate(dpf, -99,99,m=m,n=n,d=d)[[1]]

b<-p*(1-p)/(dpc^2)

b

}

#############

for(i in 1:k){

bb[i]<-bf(m=m,n=n,dd[i],pp[i])}

bb

}

#5

powf<-function(p0,p1,alpha,n){

#power for forced-choice test

a1<-sqrt(p0*(1-p0))*qnorm(1-alpha)

a2<-sqrt(p1*(1-p1))

a3<-abs(p1-p0)

zz<-(sqrt(n)*a3-a1)/a2

pow<-pnorm(zz)

pow<-round(pow,2)
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pow

}
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