H Guo^{1*}, I Heus^{1,2}, RJEM Smeets^{1,5} and EAA Rameckers^{1,3,4}

¹Department of Rehabilitation Medicine, Research School CAPHRI, Maastricht University, Maastricht, The Netherlands ²Research Centre for Assistive Technology in Health Care, Zuyd University of Applied Sciences, Heerlen, The Netherlands ³Rehabilitation Science and Physiotherapy. Hasselt University, Belgium ⁴Centre of Expertise, Adelante Pediatric Rehabilitation, The Netherlands ⁵CIR Rehabilitation, Eindhoven, The Netherlands

*Corresponding Author: H Guo, Rehabilitation Medicine Department, Maastricht University, Maastricht, The Netherland.

Received: November 13, 2023; Published: November 24, 2023

Abstract

Background: Advances in technology allow the use of different systems in the training of motor performance. The aim of this review is to provide an overview of currently available technical interactive systems for the assessment and training of the upper extremity in humans, and challenges in their use, in relation to activities of daily life (ADL).

Method: A scoping review was conducted, using the search engines PubMed, Web of Science and Embase.

Results: In total, 160 papers were selected. Three main categories of technology were identified: camera-based, sensor-based, and combination systems. Sensor-based technology was most frequently used, with Inertial Measurement Units and accelerometer sensors. Combination systems included different technologies, such as Virtual Reality, Augmented Reality, game rehabilitation systems, internet-based systems, and 3D electromagnetic systems. Outcome, aim of each technology, different target populations, and placement on the upper extremity (UE) are summarized for those three categories.

Conclusion: This scoping review evaluates various technologies for assessing and training UE motor performance in ADL in individuals with impairments. The review identifies a lack of a single comprehensive tool to effectively measure and improve multiple outcomes, including task-specific strength in the UE and object positioning during ADL or movement. Our findings suggest the need to develop technologies that can serve as comprehensive tools for the assessment and training of UE motor performance in individuals with impairments.

Keyword: Technology; Upper Extremity; Activity of Daily Life; Rehabilitation

Introduction

Motor performance is the ability to perform a motor task and covers a variety of terms (e.g. motor skills, motor abilities) used to describe goal-directed human movement [1]. Motor performance is always observable and is influenced by many factors such as motivation, attentional focus, fatigue, and physical condition [2]. Impairments in motor performance can significantly impact daily activities and overall independence, particularly in individuals with motor and cognitive disorders. For example, children with cerebral palsy (CP), stroke, or muscle diseases often experience difficulties in upper extremity (UE) motor performance, due to muscle weakness, spasticity, or reduced

selectivity, which can lead to challenges in tasks like dressing, lifting, and carrying objects [3-5]. Addressing these deficits in rehabilitation is crucial to enhancing the child's mobility, activity level, and overall participation [6,7].

In evaluating UE motor performance, it is essential to consider factors such as muscle strength, timing, speed, accuracy in positioning objects, and the execution of daily tasks [2]. To drink from a coffee mug, one needs sufficient hand muscle strength to lift and position precisely the mug to allow one to drink the coffee without spilling. The level of muscle strength of the upper limb and accuracy of movement and positioning of the object play important roles in the execution of a high-quality and successful movement. While current assessments like the maximal voluntary contraction (MVC) using handheld dynamometers are valuable for measuring strength, they do not capture functional aspects during task performance [8,9]. Other existing tools like the Box Task, Cup Task, and Task-oriented Arm-hAnd Capacity (TAAC) instrument assess MVC during daily tasks, but a comprehensive tool evaluating strength and accuracy simultaneously during task performance is lacking [10].

Technological advancements have opened new possibilities for assessing and enhancing motor performance in individuals with movement disabilities as well as healthy subjects (e.g. athletes). Robotics, orthotics, wearable sensors, computer vision, computer gaming, electrical stimulation, virtual reality, machine learning, and computational modeling have emerged as promising technologies in this domain [11]. These technologies offer opportunities for testing and training, providing interactive feedback to improve motor performance tailored to the specific needs of individuals.

So, the aim of our study is to investigate technology or interactive systems used for assessing and training motor performance of daily activities (ADL) with objective characteristics related to UE motor performance, such as muscle strength, motor fatigability [12] and object positioning while performing a specific task in all kinds of populations. Even though the main interest is in children with CP, we specifically did not restrict our search to this population as new development in other populations including healthy populations, could be very valuable. Up until now, one systematic review has shown that wearable systems predominantly find application in monitoring and providing feedback on posture and upper extremity movements during stroke rehabilitation [13]. Another review provided an overview of sensor-technology used during upper limb tasks in multiple populations with movement disorders [14]. We did not find a review paper that described all kinds of different technical interactive systems used in UE motor performance testing and assessment.

This scoping review aims to provide an overview of currently available technical interactive systems for the assessment and training of the UE in humans of motor performance of ADL activities, with a discussion of their challenges as well as opportunities and ideas for their combination and/or development of new technologies. Furthermore, we aim to classify these systems with reference to muscle strength, object positioning, and movement accuracy in the UE.

Methods

The method of this scoping review follows PRISMA guidelines. The protocol was preregistered with the Open Science Framework (OSF) (Registration DOI https://doi.org/10.17605/OSF.IO/UE9ZC).

Eligibility criteria

Studies were selected according to the following criteria:

- Inclusion criteria:
 - 1. Studies related to healthy persons or persons with all kinds of pathology, and of any age.
 - 2. Studies must be related to the assessment or training of the UE (shoulder, elbow, wrist, hand, and fingers) focusing on tasks or activities of daily living.

- 3. A technological device or interactive system is used for assessment or training.
- 4. Published in English.
- 5. At least one of the following outcomes must be assessed (diagnostic, evaluation) for feedback using a technical device:
 - Static strength (Peak, Maximal Voluntary Contraction, fatigability),
 - Dynamic strength (power, force, velocity, acceleration),
 - Motor performance/movement accuracy (trajectory length/path),
 - Position (object or person) accuracy,
 - Position angle or eigenvector.
- Exclusion criteria:
 - 1. Studies with treatments involving drugs or alcohol.
 - 2. Studies using invasive technologies, such as needles placed on the body for purposes of EMG or electrical stimulation.
 - 3. Technology that takes over or supports the movement or force generation of the person, such as robotic exoskeletons or orthotics.
 - 4. Conference abstracts.

Search strategy

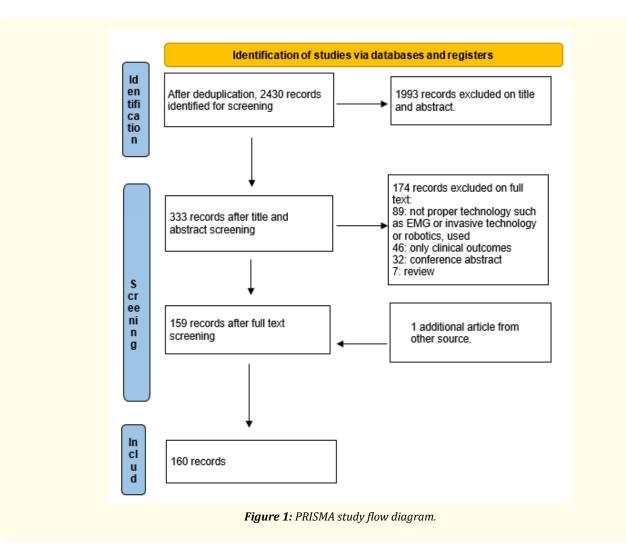
A search strategy was developed by two reviewers (HG, IH) using medical subject headings (MeSH terms) and text words in the title and abstract related to the research questions. The strategy was prepared in collaboration with a librarian. Only articles published up until 28th August 2023, on which the date the search was conducted) were included. Meta-analyses and systematic reviews (these will only be used to identify original studies not found through normal searches).

Topics in the search are technology, upper extremity, outcome measures for strength and accuracy in dynamic performance (movement) and static performance (position), rehabilitation, and ADL. First, the search strategy for PubMed was established, which includes all usable MeSH and text words to search in titles and abstracts according to the topics.

Then the strategy was adapted to the syntax and subject headings of the other databases. The search strategy is included in appendix A.

Selection process

A systematic search was conducted in the PubMed, Web of Science, and Embase databases up to 28th August 2023. Following deduplication, title and abstract screening were conducted independently by two reviewers (HG, IH) based on the pre-determined selection criteria. Full-text screening was conducted independently by the same two reviewers (HG, IH), with reasons for exclusion documented and conflicts being resolved through discussion. If there was a disagreement between two reviews, a third reviewer (ER) made the final decision.


Data extraction process

Data extraction was done by one reviewer (HG), using a standard form. The following data were extracted (See tables): 1) Study population; 2) Details of technologies used; 3) Which part of the UE is measured or trained; 4) Reported outcome measures for strength and/or object position; 5) The aim of each technology (such as assessment for diagnostics and/or evaluation of treatment effect and training/rehabilitation). The decision about the classification of the technologies will be based on the findings of the scoping review.

Results

Database search and article lists

The PRISMA flowchart (Figure 1) describes the screening process. Searches identified 3118 studies (PubMed: n = 1591; Web of Science: n = 785; Embase: n = 742): after the full selection process, we included 160 studies in this review. The original characteristics of the different technology types, target population, placement on the body, the outcomes of the technology, and the aim of the technology utilization are summarized in appendix B.

Results for types of technology

Based on the results the technologies are classified into three main categories (See table 1).

- 1. Camera-based: Technology using at least one camera, including some or all of the following components: 3D motion analyzer, video camera, optoelectronic tracking system, egocentric camera, and motion capture system.
- Sensor-based: Technologies comprising sensors, such as electromagnetic tracking devices, inertial measurement units (IMU), wearable sensors, force sensors and accelerometer sensors.
- 3. Combination systems: These combine different technologies, such as virtual reality (VR) systems, augmented reality (AR) systems, game rehabilitation systems, internet-based systems, a 3D electromagnetic system, hand function assessment system, hand motion tracking system, etc.

Citation: H Guo., *et al.* "The Technology Used in Assessment or Training of Task-Specific Strength in the Upper Extremity: A Scoping Review". *EC Paediatrics* 12.12 (2023): 01-22.

Camera-based technologies were widely used in evaluating ADL involving the human body and its interaction with objects. Thirty studies involved these technologies (1-30). The number of cameras varied from one head-mounted egocentric camera to a sixteencamera-based motion capture system. Motion analysis (with optical three-dimensional (3D) motion analyzers) has more applications in other fields, such as gait analysis and computer graphics. This type of technology appears applicable to the quantitative analysis of UE motions. The UE trajectory on the human body is detected by the camera, and joint angle, movement smoothness, velocity, and force are calculated by a computer algorithm. In three studies (11-13), a head-mounted egocentric camera was used in a simulated home situation to record how participants performed various ADL activities in different room settings. These included tasks such as food preparation in the living room and beverage preparation at the kitchen counter. In 27 papers (1-10, 14-30), motion capture systems were used in recording the movement of the object or upper limbs.

The sensor-based technology is the most used (90 out of 160) of which IMU sensor (31-66, 70-79, 82-87, 89-90, 152,154-156,159) and accelerometer sensor (93-115) are the most frequently used. An IMU is an electronic device that measures a body's specific force, angular rate, and sometimes the orientation of the body, using a combination of accelerometers, gyroscopes, and sometimes magnetometers. Accelerometer or IMU-based systems typically consist of several sensor nodes and can measure kinematic parameters such as orientation, position, and velocity, as well as complex body posture and joint range of motion. Eleven articles (67-69, 74, 79-81, 88, 91-92) used specific force sensors to evaluate muscle strength.

The combination systems included different technologies together. Thirteen articles (116,118,120,122,125-126,139,144-146,148-149,153,157,160) used VR or AR technologies that were combined with a gaming platform that was used for training or rehabilitation. One article (149) used the VR system to improve upper-limb function in children with CP [15]. Two rehabilitation systems (119,141) focused on hand and arm with ADL-related games. One Internet-based system (121) designed for people with a stroke was used at home. A 3D-electromagnetic system (123) was used for the assessment of upper limb function. And a few studies used a more functional assessment system such as Instrumented Measure–Spoon (AIM-S) system (128), a book-shaped system, or instrumented pen and forks (135), which are more related to ADL. One platform (140) consists of a smart cup embedded with sensors to monitor object position.

Camera-based	Motion capture system	1-10,14-30
technology	Egocentric camera	11-13
Sensor-based	IMU/Inertial sensor	31-66,70-79,82-87,89-90,152,154-156,159
technology	Accelerometer	93-115
	Force measurement sensor	67-69, 74, 79-81,88, 91-92
Combination systems	VR or AR	116,118,120,122,125-126,139,144-146,148- 149,153,157,160
	Gaming Platform	119,141
	Others	117,121,123-124,127-138,140,142-143,147,150-151,158

Table 1: Classification of different technologies.

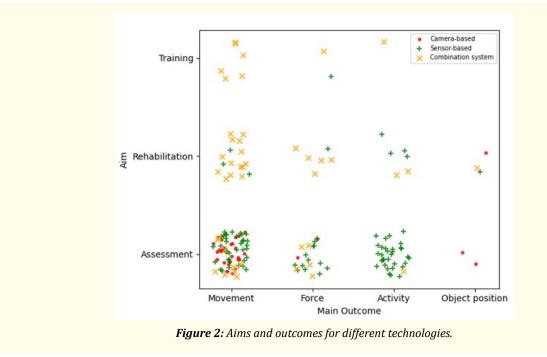
Abbreviations: IMU: Inertial Measurement Unit; VR: Virtual Reality; AR: Augmented Reality.

Results for outcomes measures

The classifications are presented in appendix C. Each classification type comprises two domains: type of technology and outcome measures used. These are grouped into four areas.

Citation: H Guo., *et al.* "The Technology Used in Assessment or Training of Task-Specific Strength in the Upper Extremity: A Scoping Review". *EC Paediatrics* 12.12 (2023): 01-22.

06


First, movements of the upper limb (studies 1-11,14-29,31-36,39,41-43,45,48,52-53,55-56,60-61,70-71,73,75-78,82-87,89-90,92,96,110,116-117,118-129,131,136-139,142-149,152,154-155,157) or of an object (11-13, 74,150), including range of motion, velocity, motion trajectory, etc. Range of motion measurement is discussed in 53 articles. Measurement of velocity and acceleration is the subject of 15 articles. Fourteen articles assess movement smoothness or movement trajectory. Second, the outcome of force or muscle strength, including peak force and motor fatigability, is addressed in 27 studies (3,30,40,44,46,64,66-69,74,79-81,88,91-92,117,130,132-133,135,141,143,145,150-151). Third, 36 articles (37-38, 47, 49-51, 54, 57-59, 62-63, 65, 72, 93-95, 97-109,111-115,134,153,156,159-160) are related to the daily activity outcome. Fourth, the position of an object during a specific task or activity is described in five articles (11-13,74,150). In summary, the studies covered a diverse range of topics, including UE movements, force or muscle strength, daily activity outcomes, and object positioning during tasks. These results highlight the many approaches using technology to enhance motor performance across different domains.

We found only two papers (74,150) describing a technique that could be used to assess task-specific strength and object location during ADL. Bobin., *et al.* (74) offered a novel platform for monitoring the arm and hand activity of stroke patients. The platform features a smart cup that may be used to simulate everyday behaviors such as drinking. The intelligent cup is fitted with a variety of sensors that capture data on vibrations, orientation, liquid level, and location relative to a reference target. The sipping task also measures grip strength. Additionally, the prototype has auditory and visual displays that provide feedback to users on their movements [16].

The other study (150) presented the design and development of a unique platform for monitoring the force and torque of the entire human body. Based on multichannel force/torque measurements on the entire body collected during ADL under isometric settings, a platform comprising many devices is used to evaluate post-stroke patients. Some item positions, such as that of a wheelchair, can be monitored throughout daily activities [17].

Results for the use of technology for assessment or rehabilitation

The classification of aims for each technology is presented in appendix D. In figure 2 it shows the aims and outcomes (assessment or evaluation) for different technologies. One key finding is that a large majority of technologies are being used for assessment (diagnostic, as well as treatment evaluation), with only a small proportion being used for training or rehabilitation. This suggests that more research could be applied to converting these technologies towards training in motor performance. The majority of the camera-based and sensor-based systems are used to assess UE movement; combination systems have a wider range of uses in both aims and outcomes.

Citation: H Guo., *et al.* "The Technology Used in Assessment or Training of Task-Specific Strength in the Upper Extremity: A Scoping Review". *EC Paediatrics* 12.12 (2023): 01-22.

07

For assessment, we distinguish between diagnostic assessment for patients and evaluation effects for healthy subjects. Training refers to the process of developing and improving performance through exercises and practice. Rehabilitation refers to the process of helping recover from an injury or illness. In summary, training focuses on improving performance, while rehabilitation focuses on restoring function and treating injuries. A total of 130 studies used technology for assessment purposes, 59 for diagnostic purposes and 74 for evaluation of effects, while only 15 used technology for training, and 35 for rehabilitation purposes.

Result for target populations

The use of technology with healthy participants is described in 60 studies, while 95 describe the use of technology with patients suffering from the following diseases: stroke (n = 56), spinal cord injury (n = 12), shoulder injury (n = 5), mild cognitive impairment (n = 4), hand osteoarthritis (n = 3), CP (n = 3), distal radius fractures (n = 2), Parkinson's disease (n = 2), Friedreich's ataxia (n = 2), and other diseases (n = 12) including Duchenne muscular dystrophy, intellectual disabilities or memory disorder.

Results for placement of technologies on the upper limb

Overview of the placement of the technologies is presented in figure 3.

Fifty-four technologies are applied to the hand, 18 to the wrist, 23 to the finger, 17 to the shoulder, 4 to the elbow, 13 to the arm, and 60 to the UE overall. Technologies used with the different target populations and their placement on the UE. Healthy people and stroke patients are the most targeted populations for the use of different technologies. Sensor-based technology is mostly placed on the hand and wrist, while no technology focuses solely on the elbow. Overall, this figure provides detailed information about the target populations, and the UE placements being targeted by the technologies being used to assess UE motor performance in humans.

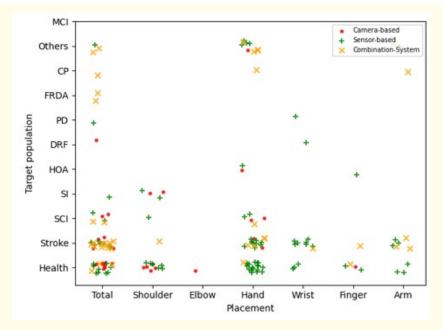


Figure 3: Technologies used and their placement, for different target populations.

Discussion

The purpose of this scoping review was to examine the current state of research and challenges for technologies and assessment tools used to enhance motor performance in the upper limb in many kinds of population. A second aim was to classify these systems with respect to muscle force, movement, daily activity, and object positioning with the UE.

The classification of technologies into camera-based, sensor-based, or combination systems provides a useful framework for understanding the various technologies currently used for the assessment and training of UE motor performance in humans. One key result is the wide range of measurement domains being used to assess upper limb motor performance, including movements of the upper limb, force or muscle strength, daily activity outcomes, and the position of objects during a specific tasks or activities. These domains provide valuable information about an individual's functional ability to perform ADL tasks and can be useful for tracking progress over time. A significant portion of the studies included in this review (approximately 37%) focus on healthy subjects, rather than on individuals with specific pathological conditions. Our research did not go into detail about the differences between technology used for children and adults or elderly people, or about the contrast between populations who are healthy and those that are impacted. Maybe further research should pay attention to that. In the field of children and children with cerebral palsy, the number of studies utilizing sensor technology to study accompanying motor performance is very small, representing approximately 5% of the population with all pathologies [14].

The technologies used for the upper limbs have a variety of purposes, including assessment, both diagnostic and evaluation, training, and rehabilitation. A previous study showed that wearable systems such as sensors like different sensors and accelerometers are primarily used to improve motor performance in UE rehabilitation [13]. The technologies we found are mainly used for assessment (n = 120), less frequently for training (n = 11) and rehabilitation (n = 33). We did not find any literature describing the preference for diagnosis-focused technology over training or rehabilitation focused technology at the moment. Maybe the reason is due to several factors, including the requirement for precise standards and progress tracking, regulatory concerns, clinical demands for diagnostic tools, and resource allocation. Wearable technology in healthcare faces adoption barriers due to dynamic interactions, developing training technologies frequently demands greater complexity and resources [18]. Even though testing may be the main focus right now, improvements in assessment could open the door to better training tools and a more all-encompassing strategy in the future.

Types of technology

Most of the camera-based technologies are traditional optical or camera-based motion capture systems, typically laboratory-based and requiring markers to be attached to participants' skin. These markers act as reference points and are placed according to the underlying human anatomy, allowing segmental movement to be defined and joint angles to be calculated. They can provide detailed information about the movements of the upper limb, including range of motion, velocity, and acceleration. This can be particularly helpful in assessing motor function and identifying impairments in the UE. These systems are often considered the gold standard for motion capture due to their high accuracy and precision [19]. However, they have several limitations, including the need for specialized equipment and trained operators, the requirement for a controlled environment, and the need to attach markers to the skin, which can be uncomfortable for participants [20]. Lahkar, *et al.* found that the marker-less motion capture system may be a promising alternative for analyzing motor performance due to its practicality, as it can be used in the patient's own environment, although further research is needed to fully assess its accuracy and suitability for this purpose [21].

In the domain of sensor-based technology, such as electromagnetic sensors, mechanical sensors, optical sensors, and inertial sensors (e.g. accelerometers and IMUs), the latter are the most frequently utilized tools for analyzing upper limb motion, according to a recent review¹³. Sensor-based technology has the potential to increase adherence to home-based interventions by providing real-time sensory reminders to perform exercises and by providing objective feedback about the type and amount of UE exercises completed. This can be beneficial in both home-based and clinic rehabilitation settings [22]. Some accelerometers, IMUs, or sensor-embedded wearable devices such as sensorized gloves [23], wearable inertial rings, and bracelets [24] can track UE movement trajectories and record movement data. These sensors can also be customized for specific tasks or goals, which can help create personalized rehabilitation or training programs. Tramontano., *et al.* found that sensor-based training programs provide intensive and function-oriented rehabilitation that can be a good complementary strategy for hand rehabilitation in MS patients [25]. Many sensor-based technologies are portable, sourceless

Citation: H Guo., *et al.* "The Technology Used in Assessment or Training of Task-Specific Strength in the Upper Extremity: A Scoping Review". *EC Paediatrics* 12.12 (2023): 01-22.

(meaning they do not require external references or markers), compact, and lightweight, making them suitable for portable motiontracking applications [26]. One of the main challenges of using sensor-based technologies for rehabilitation in the home environment is the need to reduce the visibility or impact of the sensors and to ensure the accuracy of the exercises done at home [27].

The advantage of these kinds of combination systems is that some, combined with a variety of sensors or cameras, could be used to assess different outcomes at the same time and also be applied to the whole UE. One typical combination system specifically focuses on a platform designed to measure forces and torques being applied to the whole body. It could be useful for assessing the strength and stability of different body parts, as well as for developing targeted rehabilitation strategies. The challenge is also clear: some systems are huge and non-portable, requiring a large, open space, and it may not be practical or possible to set up the technology in some locations. VR systems are also widely used as combination systems, since VR has the potential to be a useful modality for motor rehabilitation after stroke [28]. It can provide an intensive and repetitive training environment that is essential for promoting neuroplasticity and improving motor recovery. VR can also be motivating for patients by increasing enjoyment and adding gamification elements, which can encourage participation and increase task repetition. The flexibility of VR allows for individualized rehabilitation designs, according to the patient's motor impairment, and can be used as an adjunctive therapy to conventional rehabilitation or as a telerehabilitation or home-based rehabilitation tool. VR systems can also be used to track patient progress and functional assessment using motion sensors [22].

Outcomes and aims of technology utilization

Various outcomes have been measured in studies using technologies placed on the UE, including movements, force or muscle strength, daily activities, and object positioning during specific UE tasks or activities. Several studies have evaluated movements of the upper limb, using measures such as range of motion, velocity, acceleration, and movement smoothness or trajectory. Force or muscle strength has also been a common outcome studied. Koontz., *et al.* measured hand force with force sensors to investigate the effects of different hand and trunk positioning [29]. Measures such as peak force and motor fatigability are important outcomes in evaluating the strength and endurance of the UE muscles. Daily activity has been a focus of some studies, with accelerators the most frequent technology employed. Bochniewicz., *et al.* (50) present a method for measuring UE use in individuals with hemiparesis using a wrist-worn accelerometer. The method is inexpensive, objective, and accurate, and it has the potential to be used in restorative treatment trials to assess the impact of UE treatments [13].

A big gap in outcomes is that only a few studies focus on object positioning, and we were unable to identify any research on task-specific strength in combination with object positioning. Object positioning is important in movement accuracy in the upper limbs because it allows for efficient and effective use of the hand and arm during functional tasks. For example, if an object is positioned at the wrong angle or distance from the body, it can be difficult to grasp or manipulate the object, leading to decreased accuracy and increased effort. Task-specific strength training can be an effective way to improve functional ability and independence. Greater muscle strength, in the presence of proper object positioning, allows for even greater force generation and precision. Proper object positioning combined with stronger muscles, allows for more efficient and controlled movements, resulting in increased movement accuracy.

We only found two papers (74,150) relevant to UE strength and object position during ADL. Bobin., *et al.* describe a platform for monitoring the arm and hand activity of stroke patients during rehabilitation exercises in hospital and at home. This comprises a self-contained smart cup equipped with sensors that collect information about its orientation, liquid level, position, and tremors, as well as giving audio and visual feedback to patients. The smart cup was designed following interviews with therapists and was tested in a preliminary study involving nine stroke patients. The results of this showed the cup to be well accepted by the majority of patients, with almost no concerns about its design or usability. But no results were presented on object positioning and muscle strength in this study [16]. Mazzoleni., *et al.* described the design and development of an innovative platform for measuring whole-body force and torque on human subjects. The platform, comprising many different devices, is used to assess post-stroke patients, based on multichannel force/

Citation: H Guo., *et al.* "The Technology Used in Assessment or Training of Task-Specific Strength in the Upper Extremity: A Scoping Review". *EC Paediatrics* 12.12 (2023): 01-22.

10

torque measurements on the entire body recorded during ADL tasks in isometric conditions [17], but the measurement of muscle strength and object positioning is not task-specific in daily activity living. The current study aims to identify and create technology capable of accurately evaluating UE motor performance through the measurement of muscle strength, movement, and object positioning during specific tasks. This technology is intended to be a means of evaluating and enhancing UE motor skills. The development of this technology may be based on existing prototypes and systems and could be expanded to incorporate the integration of additional ADL. The ultimate goal of this technology is to achieve the dual purpose of serving as a tool for the assessment of motor performance and as a means of training and rehabilitation for specific UE tasks.

Conclusion

In this scoping review, several technologies for the assessment and training of the UE about motor performance in ADL were evaluated and classified based on various factors, including their characteristics, outcomes, target population, and body placement. Even though there are various technologies out there, we still don't have a single tool that can effectively measure and improve multiple outcomes all at once. What we really need is a tool that can measure task-specific strength in the upper extremities, while also detecting object positioning during daily activities or object and/or UE position during object movement for diagnosis or treatment purposes. We hope others can use this knowledge to further develop technologies to measure UE motor performance, including muscle strength or movement and object positioning in task-specific activities. Further research is needed to address this gap and to develop technologies that can serve as comprehensive tools for assessment and training of the UE in individuals with impairments in this.

Funding Support

H. Guo is sponsored by Chinese Scholarship Council (CSC).

Authors Contribution

H. Guo and I. Heus share co-first authorship on this manuscript, indicating that they contributed equally to the research and writing process.

Appendix

	Search query	Number of articles (28 th August 2023)
1	Upper Extremity[MeSH] OR upper extremit*[tiab] OR upper limb*[tiab] OR upperlimb*[tiab] OR arm[tiab] OR arms[tiab] OR upperarm*[tiab] OR shoulder*[tiab] OR underarm*[tiab] OR elbow*[tiab] OR forearm*[tiab] OR	
	hand*[tiab] OR wrist*[tiab] OR finger*[tiab]	
2	Technology[Mesh:NoExp] OR Techn*[tiab] OR User-Computer Interface[MeSH] OR User-computer interface*[tiab] OR Virtual System*[tiab] OR Wearable Electronic Devices[MeSH] OR device*[tiab] OR interactive system*[tiab] OR sensor*[tiab] OR sensor system*[tiab] OR Inertial Measurement Unit[tiab] OR IMU[tiab] OR kinect[tiab] OR Computer Simulation[MeSH] OR computer simulat*[tiab] OR Virtual realit*[tiab] OR Augmented realit*[tiab] OR augmented virtualit*[tiab] OR mixed realit*[tiab] OR Haptic technology[MeSH] OR haptic*[tiab] OR Exergaming[MeSH] OR exergam*[tiab] OR Video Games[MeSH] OR video gam*[tiab] OR Accelerometry [MeSH] OR acceleromet*[tiab] OR actigraph*[tiab] OR gyroscop*[tiab] OR force plate*[tiab] OR pressure plate*[tiab] OR physiological embodiment*[tiab] OR motion analysis system*[tiab]	

3	Muscle Strength [MeSH] OR strength [tiab] OR isometric contraction[tiab] OR isotonic contraction[tiab] OR Maximum Voluntary contraction OR Muscle Fatigue [MeSH] OR muscle fatig* [tiab] OR muscular fatig* [tiab] OR motor fatig*[tiab] OR force*[tiab] OR resist* [tiab] OR muscle power [tiab] OR muscular power[tiab]OR velocity [tiab] OR acceleration [MeSH] OR accelerat* [tiab] OR posture [MeSH] OR posture*[tiab] OR position*[tiab] OR Psychomotor Performance [MeSH] OR mo- tor performance*[tiab] OR motor coordination[tiab] OR task performanc*[tiab] OR motor activit*[tiab] OR movement accurac*[tiab] OR movement smooth*[tiab] OR traject*[tiab] OR Motion[MeSH] OR motion*[tiab] OR movement[MeSH] OR Movement*[tiab] OR Range of motion, articular[MeSH] OR range of motion*[tiab] OR ROM[tiab] OR joint flexibil*[tiab] OR joint mobilit*[tiab] OR Eigen Vector [tiab]	
4	Rehabilitation[MeSH] OR rehab*[tiab] OR exercis*[tiab] OR training*[tiab] OR therap*[tiab] OR occupational therap*[tiab] OR ergotherap*[tiab] OR Physical Therapy Modalities[MeSH] OR Physical Therapy Specialty[MeSH] OR physical therap*[tiab] OR physiotherap*[tiab] OR program*[tiab]	
5	(Animals [MeSH] OR animal* [tiab]) NOT (Human [MeSH])	
6	Robotics [MeSH] OR robot* [tiab] OR Exoskeleton Device [MeSH] OR exoskeleton* [tiab]	
7	2 NOT 6	
8	Activities of daily living [MeSH] OR ADL [tiab] OR daily liv* [tiab]	
9	Alcohol-Related Disorders [Mesh] OR Alcohol Related disorder*[tiab] OR Alcohol problem*[tiab] OR Alcoholism [tiab] OR alcohol addict*[tiab] OR Illicit Drugs[Mesh] OR drug* [tiab]	
10	4 NOT 9	
11	(1 AND 7 AND 3 AND 10 AND 8) NOT 5	1591

Web of Science

		Number of articles (28 th August 2023)
1	TS=(upper extremit* OR upper limb* OR upperlimb* OR arm OR arms OR upperarm* OR shoulder* OR underarm* OR elbow* OR forearm* OR hand* OR wrist* OR finger*)	
2	TS=(Techn*OR User-computer interface*OR Virtual System* OR device* OR interactive system* OR sensor* OR sensor system* OR Inertial Measurement Unit OR IMU OR kinect OR computer simulat* OR Virtual realit* OR Augmented realit* OR augmented virtualit* OR mixed realit* OR haptic* OR exergam* OR video gam* OR acceleromet* OR actigraph* OR gyroscop* OR force plate* OR pressure plate* OR physiological embodiment* OR motion analysis system)	
3	TS=(strength OR isometric contraction OR isotonic contraction OR Maximum Voluntary contraction OR muscle fatig* OR muscular fatig* OR motor fatig* force* OR resist* OR muscle power OR muscular power OR velocity OR accelerat* OR posture* OR position* OR motor per- formance* OR motor coordination OR task performanc* OR motor activit* OR movement accu- rac* OR movement smooth*OR traject*OR trajectory length OR trajectory path*OR motion* OR Movement* OR range of motion* OR ROM OR joint flexibil* OR joint mobilit* OR Eigen Vector)	

Citation: H Guo., *et al.* "The Technology Used in Assessment or Training of Task-Specific Strength in the Upper Extremity: A Scoping Review". *EC Paediatrics* 12.12 (2023): 01-22.

4	TS=(rehab* OR exercis* OR training* OR therap* OR occupational therap* OR ergotherapy* OR physical therap* OR physiotherap* OR program*)	
5	TS=(animal* NOT Human*)	
6	TS=(robot* OR exoskeleton*)	
7	2 NOT 6	
8	TS= (ADL OR daily liv*)	
9	TS= (Alcohol-Related Disorder* OR Alcohol problem* OR Alcoholism OR alcohol addict*OR drug*)	
10	4 NOT 9	
11	(1 AND 7 AND 3 AND 10 AND 8) NOT 5	785

Embase

	Search query	Number of articles (28 th August 2023)
1	'upper limb'/exp OR ('upper extremit*' OR 'upper limb*' OR upperlimb* OR arm OR arms OR upperarm* OR shoulder* OR underarm* OR elbow* OR forearm* OR hand* OR wrist* OR finger*):ti,ab,kw	
2	 'technology'/exp OR 'accelerometer'/exp OR 'accelerometry'/exp OR 'video game'/exp OR 'computer simulation'/exp OR 'computer interface'/exp OR 'wearable computer'/exp OR 'sensor'/exp OR 'motion analysis system'/exp OR (Techn* OR 'User-computer interface*' OR 'Virtual System*' OR device* OR 'interactive system*' OR sensor* OR 'sensor system*' OR 'Inertial Measurement Unit' OR IMU OR kinect OR 'computer simulat*' OR 'Wirtual realit*' OR 'Augmented realit*' OR 'augmented virtualit*' OR 'mixed realit*' OR haptic* OR exergam* OR 'video gam*' OR acceleromet* OR actigraph* OR gyroscop* OR 'force plate*' OR 'pressure plate*' OR 'physiological embodiment*' OR 'motion analysis system'):ti,ab,kw 	
3	 'muscle strength'/exp OR 'muscle isotonic contraction'/exp OR 'muscle isometric contraction'/exp OR 'muscle fatigue'/exp OR 'force'/exp OR 'velocity'/exp OR 'kinematics'/exp OR 'motor performance'/exp OR 'motor coordination'/exp OR 'task performance'/exp OR 'motion'/exp OR 'movement'/exp OR 'joint mobility'/exp ('motor fatig*' OR 'strength' OR 'isometric contraction*' OR 'isotonic contraction*' OR 'Maximum Voluntary contraction' OR 'muscle fatig*' OR 'muscular fatig*' OR force* OR resist* OR 'muscle power' OR 'muscular power' OR velocity OR accelerat* OR posture* OR position* OR 'motor performance*' OR 'motor coordination' OR 'task performanc*' OR 'motor activit*' OR 'movement accurac*' OR 'movement smooth*' OR traject* OR 'trajectory length' OR 'trajectory path*' OR motion* OR Movement* OR 'range of motion*' OR ROM OR 'joint flexibil*' OR 'joint mobilit*' OR 'Eigen Vector'):ti,ab,kw 	
4	<pre>'rehabilitation'/exp OR 'exercise'/exp OR 'training'/exp OR 'physiotherapy'/ exp OR (rehab* OR exercis* OR training* OR therap* OR 'occupational therap*' OR ergotherapy* OR 'physical therap*' OR physiotherap* OR program*):ti,ab,kw</pre>	

Citation: H Guo., *et al.* "The Technology Used in Assessment or Training of Task-Specific Strength in the Upper Extremity: A Scoping Review". *EC Paediatrics* 12.12 (2023): 01-22.

5	(ʻanimal'/exp OR animal:ti,ab,kw) NOT (ʻhuman'/exp)	
6	'robot'/exp OR 'robotics'/exp OR 'exoskeleton (rehabilitation)'/exp OR (ro- bot* OR exoskelet*):ti,ab,kw	
7	ʻalcoholism'/exp OR ʻalcohol abuse'/exp OR ʻalcohol rehabilitation'/exp OR ʻalcoholics anonymous'/exp OR ʻdrug'/exp OR (alcoholism OR alco- hol* OR ʻalcohol abuse' OR ʻalcohol rehabilitation' OR ʻalcohol addict*' OR drug*):ti,ab,kw	
8	'daily life activity'/exp OR ('activity of daily li*' OR 'daily li* activity'):ti,ab,kw	
9	2 not 6	
10	4 not 7	
11	1 and 3 and 8 and 9 and 10	
12	11 not 5	742

Number	Reference	Technology	Outcome	Purpose	Target population	Placement
1	(S., et al. 2006)	3D Motion Analyzer	ROM	Assessment	Healthy	Total
2	(Lee., <i>et al</i> . 2007)	3D Motion Analyzer	ROM	Assessment	Healthy	Shoulder Elbow
3	(IA and GR, 2004)	Video Camera	Force ROM Moment	Assessment	Healthy	Shoulder Elbow
4	(C and UP, 2000)	Optoelectronic Tracking System	Motion	Assessment	Healthy	Total
5	(FB., et al. 2015)	IMU and Motion Capture System	Movement	Assessment	Stroke	Total
6	(Mesquita., <i>et al</i> . 2020)	3D Motion Capture System	Velocity ROM Smoothness	Assessment	Healthy	Total
7	(Rundquist and Ludewig, 2005)	3D Analysis	ROM	Assessment	Frozen Shoulder or Adhesive Capsulitis	Shoulder
8	(Stansfield., <i>et al.</i> 2018)	3D Motion Analysis	ROM	Assessment	Healthy	Elbow Wrist Finger
9	(M., et al. 2019)	Motion Capture System	Motion	Assessment	Healthy	Total
10	(Ranganathan., <i>et</i> <i>al</i> . 2017)	Wearable Sensor System and Motion Capture System	Acceleration Angular Velocity	Assessment	Healthy	Total
11	(J., et al. 2019)	System Based On A Wearable Camera	Object Motion	Assessment	SCI	Hand
12	(MF., et al. 2021)	Head-Mounted Egocentric Camera	Object Motion	Assessment	Stroke	Hand
13	(J and J, 2018)	Egocentric Camera	Hand Object Position	Rehab	SCI	Hand
14	(Alt Murphy., <i>et</i> <i>al</i> . 2018)	3D Motion Capture	Velocity Smoothness	Assessment	Stroke	Hand
15	(Lee., <i>et al</i> . 2016)	Camera	Velocity ROM	Assessment	Healthy	Total

Citation: H Guo., et al. "The Technology Used in Assessment or Training of Task-Specific Strength in the Upper Extremity: A Scoping Review". EC Paediatrics 12.12 (2023): 01-22.

1	4	

16	(Thrane., <i>et al</i> . 2019)	Motion Capture System	Velocity ROM	Assessment	Stroke	Total
17	(Alt Murphy., et al. 2011)	5-Camera Capture System	Movement Ve- locity Smooth- ness	Assessment	Stroke	Total
18	(FA 3rd., <i>et al.</i> 2016)	Infrared Position Detection System	ROM	Assessment	Healthy	Shoulder
19	(K., et al. 2018)	Mount 8 Motion Tracking Cam- eras	Movement Trajectory	Assessment	MCI Patients	Hand
20	(B., et al. 2010)	Camera System	ROM	Assessment	Healthy	Shoulder
21	(MW., et al. 2014)	3D Motion Analysis System	ROM	Assessment	Total Shoulder Arthroplasty	Shoulder
22	(EL., et al. 2017)	Optoelectronic Cameras	Smoothness, Velocity ROM	Assessment	Stroke	Total
23	(BJ and DB, 2019)	Motion Capture Sensors	ROM	Assessment	Healthy	Shoulder
24	(Matthew., <i>et al.</i> 2020)	Depth Camera Systems	ROM	Assessment	Healthy	Total
25	(Holland., <i>et al.</i> 2020)	Video Cameras	ROM	Assessment	Hand OA	Hand
26	(HT., et al. 2011)	3D Motion Analysis System	ROM	Assessment	Healthy	Finger
27	(Murgia., <i>et al.</i> 2010)	8-Camera Motion Capture System	ROM Velocity Acceleration	Assessment	Distal Radius Fracture	Total
28	(K., et al. 2007)	Camera 3D Motion Analysis System	ROM	Assessment	Healthy	Total
29	(Kankipati. <i>, et al.</i> 2015)	16-Camera 3D Motion Capture System	Force ROM	Assessment	SCI	Total
30	(AM., et al. 2011)	6 Cameras 3D Motion Capture System	Force ROM	Assessment	SCI	Total
31	(HE., <i>et al</i> . 2006)	Electromagnetic Tracking De- vice, The Flock Of Birds (Ascen- sion Technology Inc., Burlington, Vermont, USA)	ROM	Assessment	Healthy	Shoulder

1	5	

32	(Gil-Agudo., <i>et al.</i> 2013)	Xsens System (Inertial Sensor Motion Capture System Using Proposed Kinematic Model)	ROM	Assessment	Healthy	Shoulder Elbow Wrist
33	(K., et al. 2018)	Leap Motion Sensor	ROM	Assessment	Healthy	Hand Wrist Fingers
34	(B., et al. 2008)	Inertial Sensor	Acceleration And Angular Velocity	Assessment	Healthy	Shoulder
35	(RM., et al. 2019)	IMU	ROM	Assessment	Healthy	Shoulder
36	(S., et al. 2020)	IMU	ROM Trajectory	Assessment	Healthy	Hand
37	(M., et al. 2016)	Wrist-Worn Motion Sensors	Activity	Assessment	Healthy	Hand
38	(FM and R, 2022)	Wrist-Worn Inertial Sensors	Activity Counts And Arm Move- ment	Assessment	Healthy	Hand
39	(Vega-Gonzalez and Granat, 2005)	Activity Sensor	Movement Dis- placement	Assessment	Stroke	Total
40	(A., et al. 2014)	Wearable Sensors	Force And Ac- tivities	Assessment	Stroke	Total
41	(C., et al. 2013)	Inertial Sensors	Arm Velocity And Frequency Of Arm Usage	Assessment	Shoulder Surgery	Total
42	(B., et al. 2020)	Wrist-Worn Inertial Sensor	Quality Of Movement	Assessment	Stroke	Total
43	(Oubre., <i>et al.</i> 2020)	Wearable Inertial Sensors	Movement?	Assessment	Stroke	Total
44	(M., et al. 2020)	Sensor System	Force	Assessment	Hand OA	Hand Finger
45	(Dogan. <i>, et al.</i> 2019)	Inertial Sensors	ROM	Assessment	Healthy	Total
46	(J., et al. 2017)	Wearable Force Sensors	Grip Force	Assessment	Healthy	Hand
47	(Ignacio Ser- rano., <i>et al</i> . 2017)	IMUs	Activity	Assessment	PD	Total
48	(G., et al. 2021)	IMU	ROM	Assessment	Healthy	Wrist
49	(JPO., et al. 2018)	IMU	Activity	Rehab	Stroke	Total
50	(EM., et al. 2017)	Wrist-Worn Sensor	Activity	Assessment	Stroke	Hand
51	(JP., et al. 2022)	IMU	Activity	Assessment	Stroke	Hand
52	(B., et al. 2020)	IMU	ROM	Assessment	After Surgical Treatment for Distal Radius Fractures	Wrist
53	(SB., et al. 2009)	IMU	Acceleration	Assessment	Stroke	Hand
54	(M., et al. 2016)	IMU	Activity	Assessment	SCI	Hand

55	(BM., et al. 2011)	Body-Fixed Sensors	Power, Angular Velocity Mo- ment	Assessment	After Shoul- der Surgery	Shoulder
56	(S., et al. 2019)	IMU	ROM	Assessment	SCI	Total
57	(Kersten and Fethke, 2019)	IMU	Activity	Assessment	Healthy	Hand
58	(D and I, 2019)	IMU	Activity	Assessment	Healthy	Forearm
59	(G., et al. 2021)	IMU	Activity	Assessment	Healthy	Hand Finger Wrist
60	(Biswas., <i>et al.</i> 2015)	Inertial Sensors	ROM	Assessment Rehab	Healthy	Arm
61	(B., et al. 2016)	IMU	ROM	Assessment	Healthy	Shoulder
62	(RJ., et al. 2015)	Multiple Sensor Devices	Activity	Assessment	Healthy	Total
63	(Mallat., <i>et al.</i> 2022)	IMU	Activity	Assessment	Healthy	Total
64	(A., et al. 2004)	Force-Sensor	Grip Force	Assessment	Healthy	Hand
65	(Dobkin and Martinez, 2018)	Wearable Sensors	Activity	Assessment	Healthy	Hand
66	(MC., et al. 2005)	Smart Device	Twisting Strength	Assessment	Healthy	Hand Wrist
67	(A and M, 2001)	Hand Grasp Instrument	Force	Assessment	Healthy	Hand
68	(T., et al. 2017)	Iwakka Device	Grasping Force	Assessment	Healthy	Hand
69	(Y., et al. 2014)	Grip Strength Measuring Device	Grip Strength	Assessment	Memory Disorders Patients	Hand
70	(LM., et al. 2008)	Magnetic Tracking Device	Kinematic	Assessment	SCI	Shoulder
71	(A., et al. 2020)	Electromagnetic Tracking System	ROM	Assessment	Hand OA	Finger
72	(ND., et al. 2017)	Smart Band	Activity	Assessment	Healthy	Wrist
73	(NP., et al. 2012)	Neuroassess Glove	ROM	Assessment	SCI	Hand
74	(Bobin., <i>et al.</i> 2018)	Smart Cup	Position Grasp Force	Assessment Rehab	Stroke	Arm And Hand
75	(N and E, 2018)	Myo Armband	Motion	Assessment	Healthy	Arm And Hand
76	(WY., et al. 2020)	Smart Ball and Wearable Motion Trackers	Motion	Assessment	Adolescents With Intellec- tual Disabili- ties	Arm
77	(Mahadevan., <i>et</i> <i>al</i> . 2020)	Wrist-Worn Wearable Device	Tremor?	Assessment	PD	Wrist
78	(JP., et al. 2020)	Custom Instrumented Shirt	ROM	Assessment	Shoulder Ar- throplasties	Shoulder

Citation: H Guo., *et al.* "The Technology Used in Assessment or Training of Task-Specific Strength in the Upper Extremity: A Scoping Review". *EC Paediatrics* 12.12 (2023): 01-22.

17

79	(R., et al. 2019)	SEM Glove	Grip And Pinch Strength	Assessment	Functional Finger Disor- ders	Finger
80	(LC., et al. 2009)	Jar Simulator With One Torque Sensor	Force	Assessment	Healthy	Finger
81	(Logue. <i>, et al.</i> 2022)	Custom-Designed Sensorimotor Devices	Grip Force	Assessment	Elder Healthy	Hand
82	(Sohn., <i>et al</i> . 2019)	Portable Motion-Analysis Device (Table)	Trajectory	Assessment Rehab	Upper- Extremity Impairments	Hand
83	(A., et al. 2013)	Electromagnetic Devices	ROM	Assessment	Healthy	Shoulder
84	(A., et al. 2016)	Wearable Inertial Rings and Bracelets	Gesture	Assessment	Healthy	Hand Wrist
85	(RJ., et al. 2015)	Wireless Multi-Sensor Body- Worn Devices	Quantity Of Activity	Assessment	Neurological Patients	Hand Arm
86	(J., et al. 2012)	Sensor-Enabled RFID System	Movement	Assessment	Stroke	Object Hand
87	(Gracia-Ibanez., <i>et al</i> . 2020)	Instrumented Glove	ROM	Assessment	Healthy	Hand
88	(L., et al. 2020)	Tetragrip Is A 4-Channel Surface FES Device	Strength	Train Rehab	SCI Tetraplegia	Total
89	(Aizawa., <i>et al.</i> 2010)	An Electromagnetic 3D Tracking System	ROM	Assessment	Healthy	Total
90	(RJ., et al. 2019)	Glove Orthosis With Motion- Tracking Sensors	ROM	Assessment	Stroke	Hand
91	(B., et al. 2011)	Load Measuring Device	Force	Assessment	Healthy	Hand
92	(Mohan., <i>et al</i> . 2013)	Sensorized Glove	Force ROM	Assessment Rehab Train	Stroke	Hand Object
93	(Lang., <i>et al</i> . 2017)	Accelerometers	Use Of Time	Assessment	Stroke	Wrist
94	(Lee., <i>et al</i> . 2019)	Accelerometers	Activity	Assessment	Stroke	Wrist Finger
95	(HL., et al. 2018)	Accelerometers	Arm Activity	Rehab	Stroke Adult	Hand
96	(Bezuidenhout., <i>et al</i> . 2021)	Accelerometers	Arm Move- ments	Assessment	Stroke	Total
97	(FC., et al. 2002)	Accelerometers	Activity	Rehab	Healthy	Total
98	(G., et al. 2011)	Accelerometers	Arm Use Dura- tion	Assessment	Stroke	Arm
99	(E., et al. 2015)	Accelerometers	Activity	Assessment	Healthy	Total
100	(van der Pas., <i>et</i> <i>al</i> . 2011)	Accelerometers	Activity	Assessment	Stroke	Arm
101	(KJ and CE, 2018)	Accelerometers	Activity	Assessment	Healthy	Total

1	ο	
Ŧ	o	

102	(S., et al. 2022)	Accelerometers	Activity	Assessment	Elder Healthy	Hand
103	(A., et al. 2020)	Accelerometers	Activity	Assessment	DMD	Hand
104	(Uswatte., <i>et al.</i> 2000)	Accelerometers	Activity	Assessment	Healthy	Hand
105	(GRH., <i>et al.</i> 2021)	Accelerometers	Activity	Assessment	Stroke	Hand
106	(N., et al. 2014)	Accelerometers	Activity	Assessment	Stroke	Hand
107	(ME., et al. 2012)	Accelerometers	Activity	Assessment	Stroke	Hand
108	(RR., et al. 2015)	Accelerometers	Activity	Assessment	Stroke	Hand
109	(A., et al. 2016)	Accelerometers	Activity	Assessment	Stroke	Wrist
110	(E., et al. 2014)	Accelerometers	Movement Duration, Peaks, And Jerk Smoothness	Assessment	Stroke	Wrist
111	(X., et al. 2019)	Accelerometers	Activity	Assessment	Healthy	Finger
112	(CE., et al. 2021)	Accelerometers	Activity	Assessment	Stroke	Wrist
113	(RR and CE, 2013)	Accelerometers	Activity	Rehab	Healthy	Wrist
114	(G., et al. 2006)	Accelerometers	Activity	Assessment	Stroke	Wrist
115	(MA., et al. 2015)	Accelerometers	Activity	Assessment	Stroke	Wrist
116	(T., et al. 2013)	Virtual Environment System	Trajectory Of Movement	Training	Stroke	
117	(Gurari., <i>et al.</i> 2019)	Mechatronic System	Accuracy Strength	Assessment	Stroke	Arm
118	(Dimbwadyo- Terrer. <i>, et al.</i> 2016)	VR Systems	ROM	Assessment Training	SCI	Total
119	(X., et al. 2022)	Game Rehabilitation System	ROM	Rehab Training	Stroke	Total
120	(Dhiman., <i>et al.</i> 2018)	VR-Based Adaptive Task Plat- form	ROM	Train	Stroke	Shoulder
121	(Zhang., <i>et al.</i> 2008)	Interactive Internet-Based System	Motion	Rehab	Stroke	Total
122	(Adams., <i>et al</i> . 2015)	Virtual World-Based System	Motion	Assessment	Stroke	Total
123	(N., et al. 2013)	3D Electromagnetic System	Movement Pre- cision Velocity Smoothness	Assessment	FRDA	Total
124	(Malesevic., <i>et al.</i> 2021)	Hand Functions Assessment System (BEAGLE)	ROM	Assessment	Stroke	Hand Wrist
125	(M., et al. 2020)	Commercial Head-Mounted Display VR	Movement Performance And Quality/ Kinematic	Rehab	Stroke	Total

126	(M., et al. 2013)	AR and VR	Range, Speed, And Smooth- ness Of Move- ment.	Rehab	Healthy	Total
127	(M., et al. 2021)	D-SORM Platform				
128	(LA., et al. 2021)	Ataxia Instrumented Measure– Spoon (AIM-S) System	Smoothness, Trajectory Length, Dura- tion, And Range Of Motion	Assessment	FRDA	Total
129	(WY., et al. 2020)	Smart Ball and Wearable Motion Trackers	Motion	Assessment	Adolescents With Intellec- tual Disabili- ties	Arm
130	(SI., et al. 2018)	Wearable Sensor-Based System	Strength ROM	Training And Rehab	Stroke	Total
131	(M., et al. 2010)	Experimental Home Rehabilitation Station	ROM	Rehab	СР	Hand
132	(G., et al. 2004)	Tracking System	Grip Force	Assessment	Neuromuscu- lar Diseases	Hand
133	(Yu., et al. 2016)	Fusion Of A Gesture Sensor And A Haptic Sensor	Force	Rehab	Disabilities After Neural Injury	Hand
134	(S., et al. 2019)	Mobile Rehabilitation System	Activity	Rehab	Stroke	Total
135	(Memberg and Crago, 1997)	1.The Book-Shaped Instrument- ed Object 2.Instrumented Pen/Fork	Hand Grasp Force	Assessment	Healthy	Hand
136	(Van Der Heide., <i>et al</i> . 2017)	MMAAS Motion Capturing Instrument	ROM	Assessment	Healthy	Total
137	(de los Reyes- Guzman., <i>et al</i> . 2017)	Codamotion System Based On Active Markers	ROM	Assessment	SCI	Total
138	(Song., <i>et al.</i> 2022)	Multimodal-Based Movement Training Approach	ROM	Train Rehab	Stroke	Hand
139	(F., et al. 2016)	VR Gaming Platforms	Motion	Rehab	Stroke	Arm
140	(Bobin. <i>, et al.</i> 2016)	Platform Consists Of A Smart Cup That Embeds Sensors	Object Position	Rehab Train	Stroke	Arm Hand
141	(CS., et al. 2013)	Computer Gaming	Strength	Train Rehab	RA	Hand
142	(A., et al. 2019)	Leap Motion (LM), Hand Motion Tracking System	Two Hand Coor- dination	Rehab Train	Multiple Scle- rosis	Hand
143	(Burdea., <i>et al.</i> 2010)	Rutgers Arm Ii Rehabilitation System	Strength Rom Velocity Endurance	Rehab Train	Stroke	Total
144	(Samuel., <i>et al.</i> 2015)	VR-Based Therapy System	Trajectory Rom	Train Rahab	Stroke	Total

Citation: H Guo., *et al.* "The Technology Used in Assessment or Training of Task-Specific Strength in the Upper Extremity: A Scoping Review". *EC Paediatrics* 12.12 (2023): 01-22.

2	n	
4	v	

145	(Thielbar., <i>et al</i> . 2014)	Actuated Virtual Keypad (AVK) System.	Rom Grip Strength	Rehab Train	Stroke	Hand
146	(Dimbwadyo- Terrer., <i>et al.</i> 2016)	VR Training Based On A Data Glove	TRAJECTORY LENGTH	Rehab Train	SCI	Hand
147	(W., et al. 2020)	System Based On RF Technology	Force Velocity	Rehab	Neuromotor Diseases	Total
148	(Adams., <i>et al.</i> 2018)	VR System (SaeboVR)	Dosages Of Movement	Rehab Train	Stroke	Total
149	(JY., et al. 2021)	VR Rehabilitation System	ROM Accuracy	Rehab	Brain Injury	Total
150	(Mazzoleni., <i>et al.</i> 2009)	Force/Torque Measurements Rehabilitation: Platform	Force	Rehab	Stroke	Finger Arm
151	(Geijen., <i>et al.</i> 2020)	TAAC	Force	Assessment	СР	Arm Hand
152	(Ricotti., <i>et al.</i> 2023)	Wearable sensor	Motion trajec- tory	Assessment	DMD	Total
153	(Lee., <i>et al</i> . 2023)	VR	Activity	Training	Stroke	Total
154	(Friesen., <i>et al.</i> 2023)	IMU	Motion	Assessment	Healthy	Total
155	(Koh., <i>et al.</i> 2022)	Kinect sensor	ROM	Assessment	Healthy	Total
156	(Oubre., <i>et al.</i> 2022)	Sensor	Activity	Assessment	Stroke	Total
157	(Choi., <i>et al.</i> 2023)	VR with IMU	Accuracy of motion	Training	СР	Total
158	(Jacob., <i>et al</i> . 2023)	Five-finger perturbation system	Force and coor- dination	Assessment	Healthy	Finger
159	(N., et al. 2023)	Ring-shaped wearable device	Activity	Assessment	Stroke	Hand
160	(Kamatchi., <i>et al.</i> 2023)	VR	Activity	Training Rehab	Stroke	Total

Appendix B: Summary of the included studies

	Camera-based technology	Sensor-based technology	Combination systems
Movement	1-11,14-29	31-36,39,41-43,45,48,52-53,55- 56,60-61, 70-71, 73,75-78,82-87,89- 90,92,96,110,152,154-155,157	116-117,118-129,131,136- 139,142-149
Force	3,30	40,44,46,64, 66-69,74,79-81,88,91-92	117,130,132-133,135,140- 141,143,145, 150-151
Daily Activity		37-38,47,49-51,54,57-59,62-63,65,72, 93-95,97-109,111-115,156,159	134,153,158,160
Object position	11-13	74	150

Appendix C: Classification of outcomes based on each technology

		Camera-based technology	Sensor-based technology	Combination system
Assessment	Diagnostic	5,7,11-12,14,16- 17,19,21-22,25,27,29- 30	39-44,47,50-56,69-71,73-74,76- 79,85-86,90,93-94,98,100,103,105- 110,112,114-115,152,156,159	117-118,122-124,128- 129,132,137,151,153,
	Effect evaluation	1-4,6,8- 10,15,18,20,23- 24,26,28	31-38,45-46,48,57-68,72,75,80- 81,83-84,87,89,91,99,101- 102,104,111,154-155,	135-136,158
Training			92	118,120,140-146,148,157,
Rehabilitation		13	49,60,74,82,88,92,95,97,113	119,121,125-127,130- 131,133-134,138-150,160

Appendix D: Classification of aims for each technology	Appendix D:	Classification	of aims for	· each tec	hnology
--	-------------	----------------	-------------	------------	---------

Bibliography

- Lafferty M. "Book Reviews: Movement Skill Assessment. Burton, A.W. and Miller, D.E. Human Kinetics Pub., 1998, ISBN 0-87322-975-4, 407pp. £25". European Physical Education Review 4.2 (1998): 172-172.
- 2. Schmidt RA and Wrisberg CA. "Motor Learning and Performance: A Situation-Based Learning Approach". Human Kinetics (2008).
- 3. Bax M., *et al.* "Proposed definition and classification of cerebral palsy". *Developmental Medicine and Child Neurology* 47.8 (2005): 571-576.
- 4. Boyd GW. "An evolution-based hypothesis on the origin and mechanisms of autoimmune disease". *Immunology and Cell Biology* 75.5 (1997): 503-507.
- 5. Fehlings D., *et al.* "Botulinum toxin type A injections in the spastic upper extremity of children with hemiplegia: child characteristics that predict a positive outcome". *European Journal of Neurology* 8.5 (2001): 145-149.
- 6. Cortes M., *et al.* "Improved motor performance in chronic spinal cord injury following upper-limb robotic training". *NeuroRehabilitation* 33.1 (2013): 57-65.
- 7. World Health Organization, ed. "International classification of functioning, disability and health: ICF". World Health Organization (2001).
- 8. Dekkers KJFM., *et al.* "Upper extremity muscle strength in children with unilateral spastic cerebral palsy: a bilateral problem?" *Physical Therapy* 100.12 (2020): 2205-2216.
- 9. Schrama PPM., *et al.* "Intraexaminer reliability of hand-held dynamometry in the upper extremity: a systematic review". *Archives of Physical Medicine and Rehabilitation* 95.12 (2014): 2444-2469.
- 10. Geijen M., *et al.* "Exploring relevant parameters and investigating their reproducibility of task-oriented unimanual strength measurement in children with unilateral cerebral palsy". *Disability and Rehabilitation* (2023): 1-7.
- 11. Reinkensmeyer DJ and Boninger ML. "Technologies and combination therapies for enhancing movement training for people with a disability". *Journal of NeuroEngineering and Rehabilitation* 9.1 (2012): 17.

Citation: H Guo., *et al.* "The Technology Used in Assessment or Training of Task-Specific Strength in the Upper Extremity: A Scoping Review". *EC Paediatrics* 12.12 (2023): 01-22.

- 12. Brunton LK. "Descriptive report of the impact of fatigue and current management strategies in cerebral palsy". *Pediatric Physical Therapy* 30.2 (2018): 135-141.
- 13. Wang Q., *et al.* "Interactive wearable systems for upper body rehabilitation: a systematic review". *Journal of NeuroEngineering and Rehabilitation* 14.1 (2017): 20.
- 14. Vanmechelen I., *et al.* "Assessment of movement disorders using wearable sensors during upper limb tasks: A scoping review". *Frontiers in Robotics and AI* 9 (2023): 1068413.
- 15. JY C., *et al.* "Virtual reality rehabilitation in children with brain injury: a randomized controlled trial". *Developmental Medicine and Child Neurology* 63.4 (2021): 480-487.
- 16. Bobin M., *et al.* "Design and study of a smart cup for monitoring the arm and hand activity of stroke patients". *IEEE Journal of Translational Engineering in Health and Medicine* 6 (2018): 2100812.
- 17. Mazzoleni S., *et al.* "Whole-body isometric force/torque measurements for functional assessment in neuro-rehabilitation: platform design, development and verification". *Journal of NeuroEngineering and Rehabilitation* 6 (2009): 38.
- 18. Lu L., et al. "Wearable health devices in health care: narrative systematic review". JMIR MHealth and UHealth 8.11 (2020): e18907.
- 19. Windolf M., *et al.* "Systematic accuracy and precision analysis of video motion capturing systems-exemplified on the Vicon-460 system". *Journal of Biomechanics* 41.12 (2008): 2776-2780.
- 20. Metcalf C., *et al.* "Markerless motion capture and measurement of hand kinematics: validation and application to home-based upper limb rehabilitation". *IEEE Transactions on Biomedical Engineering* 60.8 (2013): 2184-2193.
- 21. Lahkar BK., et al. "Accuracy of a markerless motion capture system in estimating upper extremity kinematics during boxing". Frontiers in Sports and Active Living 4 (2022): 939980.
- 22. Kim GJ., *et al.* "The use of wearable sensors to assess and treat the upper extremity after stroke: a scoping review". *Disability and Rehabilitation* 44.20 (2022): 6119-6138.
- 23. Mohan A., *et al.* "A sensorized glove and ball for monitoring hand rehabilitation therapy in stroke patients 2013 Texas instruments India educators' conference (TIIEC 2013)". 2013 Tex Instrum INDIA Educ Conf TIIEC 2013. Published online (2013): 321-327.
- 24. A M., et al. "Recognition of daily gestures with wearable inertial rings and bracelets". Sensors 16.8 (2016): 1341.
- 25. Tramontano M., *et al.* "Sensor-based technology for upper limb rehabilitation in patients with multiple sclerosis: A randomized controlled trial". *Restorative Neurology and Neuroscience* 38.4 (2020): 333-341.
- 26. Pérez R., *et al.* "Upper limb portable motion analysis system based on inertial technology for neurorehabilitation purposes". *Sensors* 10.12 (2010): 10733-10751.
- 27. Chen Y., et al. "Home-based technologies for stroke rehabilitation: a systematic review". International Journal of Medical Informatics 123 (2019): 11-22.
- 28. Levin MF, *et al.* "Emergence of virtual reality as a tool for upper limb rehabilitation: incorporation of motor control and motor learning principles". *Physical Therapy* 95.3 (2015): 415-425.
- 29. AM K., *et al.* "Upper limb kinetic analysis of three sitting pivot wheelchair transfer techniques". *Clinical Biomechanics (Bristol, Avon* 26.9 (2011): 923-929.

Volume 12 Issue 12 December 2023 ©All rights reserved by H Guo., *et al.*