
Cronicon
O P E N  A C C E S S EC PROTEOMICS AND BIOINFORMATICS 

Research Article

Gene Ontology and KEGG Orthology Mappings for 10 Strains  
of Pseudomonas stutzeri

Jin Xing Lim1 and Maurice HT Ling2,3*
1School of Applied Sciences, Temasek Polytechnic, Republic of Singapore
2Colossus Technologies LLP, Republic of Singapore
3HOHY PTE LTD, Republic of Singapore

*Corresponding Author: Maurice HT Ling, Colossus Technologies LLP, Republic of Singapore.

Citation: Jin Xing Lim and Maurice HT Ling. “Gene Ontology and KEGG Orthology Mappings for 10 Strains of Pseudomonas stutzeri”. EC 
Proteomics and Bioinformatics 3.1 (2019): 12-18.

Received: August 09, 2018; Publisded: October 29, 2019

Gene Ontology (GO) is a common set of defined and controlled vocabulary describing the roles of genes and gene products in any 
organism [1,2]. This makes GO a useful tool for comparative genomics, which requires analysis of gene and protein functions across dif-
ferent species [3-6]. GO had been used in many studies [7-9]. For example, GO had been used to analyse gene lists for biological functions 
[10-13], identifying candidate proteins for drug development [14], identifying homologous proteins [15] and functional similarities [16], 
identifying potential protein-protein interactions [17,18], and examining evolution across different phyla [19]. 
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Introduction

Although these studies demonstrated the usefulness of GO, a major drawback of GO is its lack of direct association with pathways [20]. 
KEGG Orthology (KO) aims to supplement this deficiency of GO [20], which allows for mapping functional analysis results onto pathway 
diagrams [21,22]. Similar to GO, KO had been used in a number of studies [22,23]. At the same time, both GO and KO had been used to-
gether in the same studies [24,25]; thus, implying the usefulness of KO and GO. However, the presence of GO and/or KO annotations for a 
specific organism cannot be assumed. 

Gene Ontology (GO) and KEGG Orthology (KO) are controlled vocabularies for annotating gene and protein functions, and map-
ping functions onto pathways; which enables metagenomic analysis. Pseudomonas stutzeri is an environmental bacterium with po-
tential for biotechnology applications in the environment, despite being an opportunistic pathogen. However, there has been no GO 
nor KO annotations for P. stutzeri. This study presents the first GO and KO mapping for 10 strains of P. stutzeri for further studies into 
P. stutzeri. Of the 42764 peptides in 10 strains of P. stutzeri, 30435 (71.17%) peptides were annotated with one or more GO terms 
and 25034 (58.54%) of peptides were annotated with KO terms. The annotation files and sequences can be downloaded at https://
tinyurl.com/GO-KO-Pstutzeri.

Strain Sequences: The 10 strains of P. stutzeri were (a) P. stutzeri 19SMN4 (Accession number: CP007509.1), (b) P. stutzeri 28a24 (Acces-
sion number: CP007441.1), (c) P. stutzeri 273 (Accession number: CP015641.1), (d) P. stutzeri A1501 (Accession number: CP000304.1), 
(e) P. stutzeri CCUG 29243 (Accession number: CP003677.1), (f) P. stutzeri CGMCC 1.1803 (Accession number: CP002881.1), (g) P. stutzer-
iDSM 4166 (Accession number: CP002622.1), (h) P. stutzeri DSM 10701 (Accession number: CP003725.1), (i) P. stutzeri RCH2 (Accession 
number: CP003071.1), and (j) P. stutzeri SLG510A3-8 (Accession number: CP011854.1).

Pseudomonas stutzeri is an environmental bacterium with many metabolic feature; such as, denitrification and natural transforming 
abilities [26]; and had been isolated as a multi-drug resistant human opportunistic pathogen [27]. P. stutzeri had been suggested to be a 
host for expressing membrane proteins [28] and being an environmental isolate, it has the potential for environmentally relevant applica-
tions [29]. However, there has been no Gene Ontology nor KEGG Orthology annotations for P. stutzeri. This study presents the first Gene 
Ontology and KEGG Orthology mapping for 10 strains of P. stutzeri.

Materials and Methods
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 1https://hamap.expasy.org/hamap_scan.html
 2http://www.uniprot.org/uniprot/?query=proteome: UP000000625
 3https://www.ncbi.nlm.nih.gov/nuccore/AE004091.2
 4http://geneontology.org/external2go/hamap2go
 5http://geneontology.org/gene-associations/gene_association.ecocyc.gz
 6http://geneontology.org/gene-associations/gene_association.pseudocap.gz

Mapping to Gene Ontology: Each of the 42764 peptides was scanned using HAMAP Scan [30] done on 27-Feb-20181 , and peptide 
blast against Escherichia coli K-122  and Pseudomonas aeruginosa PAO13  peptides using a purpose-generated BLAST database (Figure 1). 
HAMAP Scan [30] generated P. stutzeri to HAMAP IDs, which were then mapped to the corresponding GO IDs using HAMAP to GO map4. 
The peptide blasts generated P. stutzeri to E. coli K-12 blast result and P. stutzeri to P. aeruginosa PAO1 blast result respectively, which were 
then mapped to the corresponding GO IDs using existing E. coli to GO annotations5 and P. aeruginosa to GO annotations6 respectively for 
E-values below 1e-9. The result is 3 independent GO annotation files for P. stutzeri. These annotations files were then consolidated to yield 
a GO annotation where each P. stutzeri peptide was annotated by 3 methods.

Figure 1: Annotation Procedure.
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Results and Discussion

Mapping to KEGG Orthology: Mapping of P. stutzeri peptides to KEGG Orthology (Figure 1) was performed using BlastKOALA [31].

Gene Ontology (GO) and KEGG Orthology (KO) enable metagenomic analysis of gene and protein functions and had been used in a 
number of studies [22,23]. However, there has been no GO nor KO annotations for P. stutzeri. This study presents the first GO and KO map-
ping for 10 strains of P. stutzeri.

Different number of CDS in P. stutzeri strains: The number of coding sequences (CDS) between P. stutzeri strains varies substantially 
(Figure 2), ranging from 3851 CDS in DSM 10701 to 4595 CDS in CGMCC 1.1803; a difference of 744 CDS or between 19.32% to 16.19%. 
The average number of CDS is 4276 with standard deviation of 209. A possible reason might be horizontal gene transfer (HGT), which P. 
stutzeri is known for [26] and a complete repertoire of genes necessary for HGT had been found in several P. stutzeri strains [32]. There are 
several recent studies on HGT in P. stutzeri. For example, Saha., et al. [33] found evidence of HGT of dinitrogen reductase gene. Venieraki., 
et al. [34] analysed nitrogen-fixation islands across several pseudomonas strains including P. stutzeri and found highly similar sequences 
from geologically distant pseudomonas strains, suggesting HGT events early in evolution of Pseudomonas. Dougherty., et al. [35] demon-
strated an HGT event of a 1Mb megaplasmid from Pseudomonas syringae MAFF301305 to P. stutzeri 23a24.

Figure 2: Number of Coding Sequences (CDS) in Each Strain.

P. stutzeri Proteome Map to 3867 Unique Gene Ontology Terms: 42764 P. stutzeri peptides were annotated with GO terms using 3 
methods; BLAST and mapping via E. coli K-12 annotations and P. aeruginosa PAO1 annotations, and scanned with HAMAP scan [30] and 
mapped via HAMAP-GO annotations. Mapping via HAMAP yields 1239 unique GO terms. Mapping via E. coli K-12 annotations and P. ae-
ruginosa PAO1 annotations yield 2900 and 2021 unique GO terms respectively. In total, 42764 P. stutzeri peptides were mapped to 3867 
unique GO terms.

A total of 30435 (71.17%) P. stutzeri peptides were annotated with one or more GO terms, generating 589229 GO term mappings 
(Figure 3). Of which, 7231 (16.90%) out of 42764 peptides were found in all 3 mappings, yielding 14694 GO term mappings. 11811 GO 
term mappings were common in HAMAP and E. coli K-12 only, which accounts for 6003 (14.03%) out of 42764 peptides. 8166 GO term 
mappings were common in HAMAP and P. aeruginosa PAO1 only, which accounts for 4578 (10.71%) out of 42764 peptides. 62712 GO 
mappings were common in E. coli K-12 and P. aeruginosa PAO1 only, which accounts for 12228 (28.59%) out of 42764 peptides. 
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In terms of KEGG Orthology, only 25034 (58.54%) of the 42764 P. stutzeri peptides were annotated with KO terms by BlastKOALA [31], 
yielding 2419 unique KO terms. In total, 22706 (53.09%) of the 42764 P. stutzeri peptides were mapped to both a KO term and a GO term 
via at least one of the three mappings.

Conclusion

In summary, both GO and KO had been used in significant number of studies [36-38]. However, there has been no GO annotations nor 
KO annotations for P. stutzeri, despite its potential use in environmental biotechnology. Hence, this study presents both GO and KO annota-
tions for P. stutzeri as a new resource supporting further P. stutzeri studies. 

Annotation and Sequence File

The annotation files and sequences can be downloaded at https://tinyurl.com/GO-KO-Pstutzeri.

Figure 3: Number of GO Terms Mapped.

https://tinyurl.com/GO-KO-Pstutzeri.
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