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Abstract

Lysine pupylation is a type of post-translational modification of protein that contributes to the cellular function in microbial or-
ganisms. Identification of pupylation sites is an important step for understanding the function of microbial proteins. Nowadays, in 
silico approaches for identifying the potential pupylation sites becomes gradually popular, due to various limitations of experimental 
methods. The purpose of this review is to discuss the recent progress in the prediction of protein pupylation sites from the published 
methods, datasets, and online resources. We discussed the challenges and limitations for future endeavors to develop novel tools. We 
also deduced why species-species classifier is necessary to predict pupylation substrates. Therefore, this review would be a useful 
guideline for understanding the importance of pupylation sites prediction.
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Introduction

The prokaryotic ubiquitin-like protein (Pup) is a small protein transformer related to the post-translational modifications (PTMs) and 
similar manner of ubiquitin. The Pup is covalently attached to a lysine that contributes target protein for proteosomal degradation by 
forming isopeptide bonds [1-4], in the tagging system referred as pupylation. To date, the Pup homologs has been presented in bacteria by 
the orders of Nitrospirales and Actinomycetales species [5,6]. The microbial Pup gene has been identified [3,7], but the function of Pup is 
not fully identified in prokaryotes until recently [2,3,8]. Although, the mark of proteasome Pup degradation has been promptly accumulat-
ing in both of the in vivo [9] and in vitro [10,11] systems.

Pupylation and ubiquitylation are functionally analogous in distinct pathway by a chemically [12,13]. In microbial species, pupylation 
process involves two homologous sequential action but their enzymology is different. First, the Dop (deamidase of Pup) enzyme is de-
amidated the C-terminal glutamine of Pup to glutamate [12,14]. Then A (PafA) catalyzes enzyme makes a formation with isopeptide 
bond between the side chain by attaching to the specific lysine [15,16]. The type of covalent bonds and reaction series differ between the 
pathways of pupylation and ubiquitylation [17]. The identification of pupylation sites will be an essential foundation for revelation of the 
mechanism and function of protein pupylation. A number of proteomic experimental technologies have been performed to identify lysine 
pupylated proteins based on the molecular signature of pupylated sites [18-22]. For systematically investigating of the protein pupylation 
and its relevant function, a prerequisite is needed to establish a reliable and comprehensive dataset. However, until now a vast number 
pupylation sites have been remain undiscovered. Due to the experimental verification of pupylated substrates is time-consuming, labor-
intensive and biased toward the abundant proteins. Thus, in computational prediction of protein pupylation sites can be served as an 
alternative strategy for whole proteome annotation.
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To date, a few numbers of computational methods for prediction pupylation site has been established [23-27]. Xue., et al. proposed 
a computational predictor GPS-PUP [25], which was used a Group-based Prediction System (GPS) sequence encoding, including motif 
length selection, weight training, and matrix mutation to improve the performances’. Xiaowei., et al. proposed a computational prediction 
EnsemblePup [28]. It was utilized the Bi-profile Bayes feature extraction as an encoding scheme with Support Vector Machine (SVM) clas-
sifier. Xiaowei., et al. proposed another computational predictor PrePup [23]. It was based on multiple feature encoding such as amino acid 
index property (AAindex), position-specific scoring matrix (PSSM) conservation scores, structural disorder score, secondary structure, 
solvent accessibility, and feature space with a SVM classifier. Tung Chun-Wei developed a SVM based predictor iPUP, by exploiting a single 
sequence encoding, i.e. composition of k-spaced amino acid pair (CKSAAP) [24]. To train the classifier SVM together with a backward 
feature selection method was used. The CKSAAP is a broadly used algorithm in protein bioinformatics [29-31]. Chen., et al. [26] developed 
another SVM-based predictor PupPred. This predictor showcase variety of features including binary features, physicochemical proper-
ties, amino acid pairs, protein secondary structures, PSSM and with a k-nearest neighbor algorithm. The authors demonstrated that the 
encoding of amino acid pairs and the implementation of F-measures for feature selection with the SVM-based classifier contributed to the 
improved performance of PupPred. We developed pbPUP predictor for predicting pupylation site based on the profile-based composition 
of k-spaced amino acid pair (pbCKSAAP) encoding with SVM classifier [27]. The pbCKSAAP is also widely used method in protein bioin-
formatics research [32,33]. Jiang and Cao developed a predictor PUL-PUP using positive-unlabeled learning with a SVM algorithm [30]. 
Ju., et al. established another predictor IMP-PUP based on semi-supervised self-training with SVM algorithm [31]. Recently, Nan., et al. 
developed a predictor EPul based on an enhanced positive-unlabeled learning algorithm [34]. All the available predictors datasets were 
collected from the PupDB database [35]. Our developed pbPUP predictor achieved an overall performance improvement in comparison to 
several other predictors on a comprehensive independent test set. Although, in predicting of pupylation sites the significant progress has 
been achieved, there has still room for performance improvement.

Notwithstanding the accessibility of various prediction tools of pupylation site, an important issue is comprehensively evaluating the 
comparing performances and the weaknesses and strengths of the tools. The above tools have also some limitations when applied to 
whole proteomes species as a training model. The most important issue is that the regulation mechanism of pupylation can differs be-
tween species of prokaryotic proteins. Therefore, the structural or sequences patterns surrounding the pupylation sites may significantly 
differ in different prokaryotic species. However, all of the existing tools of prediction pupylation sites disregarded the differences between 
species by considering combined all species as a generic predictor to build a simplified model. Therefore, to generate more accurate mod-
els for the efficient identification of species-specific pupylation sites predictor is necessary and perquisite.

The aim of this review is to provide informative and practical observations about more accurate prediction of protein pupylation. We 
discussed which tool serves the best performance, in which aspect the existing predictors can be enhanced, as well as the most significant 
features contribute to the prediction. We also discussed why species-species predictor is necessary to predict pupylation sites. In general, 
our aimed to examine: whether a universal best predictor exists that can be used to prediction of pupylated proteins. 

Materials and Methods

A brief flowchart of computational framework in prediction of protein pupylation sites is shown figure 1.

Data collection and preprocessing

Experimentally verified five-species (i.e. M. smegmatis, M. tuberculosis, E. coli, C. glutamicum, and R. erythropolis) pupylation datasets 
were collected from a popular pupylation site database [35]. At first, with a 30% identity cutoff the sequence redundancy was removed 
in the datasets using CD-HIT [36]. Experimentally examined pupylated lysine residues were regarded as pupylated sites (i.e. positive 
samples); whether other lysine residues were regarded as non-pupylated sites (i.e. negative samples). Then 1:2 (pupylated vs. non-
pupylated) non-pupylated samples were randomly pooled from the remaining lysine residues. In the remaining lysine residues that have 
not yet been verified as pupylation sites, which could contain pupylated sites. The numbers of pupylated proteins and pupylated sites for 
each dataset are presented in table 1.
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Figure 1: The flowchart of protein pupylation site prediction.

Dataset Number of pupylated Proteins Number of pupylation Sites
M. smegmatis 75 84
M. tuberculosis 55 60
E. coli 51 69
C. glutamicum 55 65
R. erythropolis 31 31
Total 267 309

Table 1: Statistics of the pupylated protein and pupylation sites used in this study.

Prediction techniques under assessment

In this review our main principle to include an algorithm in the comparison analysis is that such method has been executed as either an online implementation or perfor-
mance of corresponding features. Until now, nine predictors have been established for analyzing pupylation proteins: GPS-PUP [25], EnsemblePup [28], PrePup [23], iPUP 
[24], PupPred [23], pbPUP [27], PUL-PUP [30], IMP-PUP [31], and EPuL [34]. The all of existing prediction models analyzed pupylation proteins by using a general predictor 
model, i.e. combined the existing experimentally verified pupylation proteins. Among the nine existing perdition model, GPS-PUP analyzed the pupylation proteins by group 
based prediction algorithm, EnsemblePup used Bi-Profile Bayes and other 7 models were used SVM. More information about these exiting methods is summarized in table 
2.

Tools Web-server Working 
server

Algorithm Dataset size  
(Pupylation 

sites/proteins)

Ratio of 
Training set 
Neg. vs Pos.

Ratio of  
Independent 
test Neg. vs 

Pos.

Window 
size

Time for 
processing a 

sequence

GPS-PUP http://pup.biocuckoo.org Yes GPS 127/109 1:total - 15 Within 10 
second

Ensemble Pup http://210.47.24.217:8080/EnsemblePup/ No Bi-profile 
Bayes

127/109 1:3 - 17 -

PrePup http://210.47.24.217:8080/PrePup/ No SVM 127/109 1:2 1:total 21 -
iPUP http://cwtung.kmu.edu.tw/ipup Yes SVM 215/182 1:total 1:total 25 Within 20 

seconds
PupPred http://bioinfo.ncu.edu.cn/PupPred.aspx No SVM 215/182 1:1 - 27 -
pbPUP http://protein.cau.edu.cn/pbPUP/ Yes SVM 275 / 237 1:2 1:total 57 Within 5 

minutes
PUL-PUP http://59.73.198.144:8080/EPuL No SVM 162/183 1:1 1:total 21 -
IMP-PUP https://juzhe1120.github.io/ No SVM 162/183 1:total 1:total 21 -

EPuL http://59.73.198.144:8080/EPuL No SVM 162/183 1:1 1:total 21 -

Table 2: Summary of pupylation site prediction tools compared in this study.
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Model evaluation 

To evaluate the performances of existing methods, four widely used measurements were considered including specificity (Sp), accuracy 
(Ac), sensitivity (Sn) and Matthews correlation coefficient (MCC). The following formulas are used for calculating the Sn, Sp, Ac, and MCC.

Sn = nTP/(nTP+nFN) (1)
Ac = (nTP+nTN)/(nTP+nTN+nFP+nFN) (2)
Sp = nTN/(nTN+nFP) (3)
MCC = (nTP×nTN-nFP×nFN)/√((nTN+nFN)×(nTP+nFP)×(nTP+nFN)×(nTN+nFP)) (4)

where, nTP, nFP, nFN and nTN represent the numbers of true positives, false positives, false negatives and, true negatives respectively.

Results and Discussion

Performance comparison of different prediction methods

The majority of the existing algorithms cited in this review used protein sequence information, evolutionary information and some 
residue properties and/or structural properties. We compared the predictive performances of different pupylation site predictors, includ-
ing GPS-PUP [25], iPUP [24], PupPred [23], and our previous predictor pbPUP [27]. The exhaustive comparison of the predictive results 
obtained from different schemes is almost impossible because they use different training and testing samples, different positive and 
negative samples and different assessment procedures. Performance comparison is further complicated because many methods are not 
publicly available such as, EnsemblePup [28], PrePup [23], PUL-PUP [30], IMP-PUP [31], and EPuL [34]. Performance comparison with 
existing predictors, 71 pupylated proteins containing 86 pupylation and 1136 putative non-pupylation sites that constitute an indepen-
dent dataset was used. Among these proteins, 20 proteins were extracted from iPUP [24] and 51 proteins were retrieved from a recently 
published article [20]. Currently, there exist four computational predictors to predict pupylation lysine sites, which are iPUP, GPS-PUP, 
PupPred and pbPUP. These predictors employed different training datasets for predicting pupylation sites. The independent dataset was 
used for making a fair comparison of the performance of these different predictors. As shown in table 3, the pbPUP predictor achieved 
improved performance than other exiting predictors. We found that all the existing predictors performances were very lower (Table 3). 
A possible reason is that existing computational tools are developed as a generic model by combining the data of all species. From the 
comparison results, we conclude that across all species presently no universal generic best predictor exists for pupylation site prediction.

Predictor Threshold Ac (%) Sn (%) Sp (%) MCC (%)
GPS-PUP High 83.89 19.76 88.74 6.73
iPUP High 81.13 29.06 84.90 9.56
PupPred High 88.93 9.19 94.77 4.33
pbPUP High 82.87 30.13 88.56 13.97

Table 3: The prediction performance of existing tools on the independent test dataset.

Species-specific pupylation site analysis

The patterns of sequence surrounding the pupylation sites in the 5 species datasets could be partly explained while missing perfor-
mances in existing generic pupylation site predictors. Initially, we investigated the two sample logo to analyze sequence patterns informa-
tion for determining statistically significant amino acid surrounding pupylation sites, based on five pupylation families: M. smegmatis, 
M. tuberculosis, E. coli, C. glutamicum, and R. erythropolis. The graphical sequence logo representations showing the distinct patterns or 
conserved sequence motifs between pupylation and candidate non-pupylation sites (Figure 2). From the sequence logo, we observed that, 
a number of amino acid residues that are significantly enriched around pupylation sequences. We also find that pupylation sequences are 
very dissimilar in five different species. For example, in sequence logo at position +1 and -1 residues were different in all of five species 
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(Figure 2). Another example is that, ‘P’ (proline) at position +3 only found in E. coli sequence, whereas residue is not favored in other 
species sequence. ‘R’ (arginine) residue tends enriched residues sequence, whereas C. glutamicum, and R. erythropolis had not any de-
pleted residues. The sequence logo suggested that pupylation and candidate non-pupylation fragments have a considerable difference 
among the species sequence. Altogether, the result highlights the necessity of precise candidate pupylation site recognition by developing 
species-specific predictors.

Figure 2: The Two-Sample-Logo representation of position-specific residue composition surrounding the pupylation sites and 
non-pupylation sites, based on five pupylation families: M. smegmatis, M. tuberculosis, E. coli, C. glutamicum, and R. erythropo-
lis. It has also showed that for the position between pupylated and non-pupylated residues in above five pupylation families the 
compositional amino acids had no significance differences, especially those located in the positions of ~-28 to -1 and +1 to +28.

Furthermore, we conducted a chi-square goodness of fit test to classify the amino acid residues in the different pupylation sequences 
of the five examined datasets. For the 5 species including, M. smegmatis, M. tuberculosis, E. coli, C. glutamicum, and R. erythropolis, the total 
number of collected pupylation sites were 84, 60, 69, 65 and 31, respectively. The occurrences of amino acid residues at different frag-
ment positions (~-5 to +5) with p-values were calculated and corrected by Bonferroni test (Table S1). We found that for calculating amino 
acid frequencies at each fragment window positions, a p-value of lower than 0.01 indicates that the amino acids of the 5 species-specific 
pupylation sequences are significantly different. Both Figure 2 and statistical test yielded significant differences in the sequence patterns 
of the 5 species around pupylation samples. Therefore, we recommend the scientists to make an accurate species-specific classifier to 
identify pupylation substrates.
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aThe N/A indicates among the 5 species at least one corresponding amino acid missing on the sequence fragments.

Supplementary Table S1: The p-values were calculated using Chi-square test and corrected by Bonferroni for the 
amino acid occurrence frequencies at each window positions (~-5 to +5) for pupylated sequences. Five model species 
includes M. smegmatis, M. tuberculosis, E. coli, C. glutamicum, and R. erythropolis.
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The online implementation services

A user friendly public interface web implementation or a downloadable software package is essential for users. As listed in table 1, 
there were only 9 predictors provided online implementations along with their research publication. However, some of prediction tools 
with website are not accessible to users for unknown reasons, especially for the output formats. In particular, we compared the exiting 
tools using the following criteria: (i) whether the web implementation supports batch sequences prediction; (ii) whether the method 
prediction has probability scores; and (iii) restrictions of the exiting implements. The comparison performances are summarized in 
table 1. Among the existing tools EnsemblePup [28], PrePup [23], PUL-PUP [30], IMP-PUP [31], and EPuL [34] did not provide web-
implementation to implement their algorithm. The GPS-PUP [25] did not provide the information of flanking window positions, predicted 
probability scores, and cutoff thresholds. The iPUP [24] server did not include the prediction pupylation scores in the output page. Users 
of pbPUP [27] can submit protein sequences in RAW or FASTA format. The processing time of pbPUP was < 5 minutes for one sequence, 
which was slightly longer time than the existing tools. The prediction output of pbPUP contains 4 items: protein name, residue position, 
prediction score and annotation of pupylation site with a text format. To the user perspective of the output results of the pupylation tool 
should include at least the position of the predicted pupylation site, flanking window positions and assessment scores or probability of 
the predicted pupylation site. Additionally, it is required that the predictor supports stringency modification from output of the developed 
software’s. Especially for large-scale predictions, user control of the prediction inflexibility is important, because users are interested in 
predictions with above a certain confidence threshold.

Biological and functional aspects: pupylation site prediction

The biological function of pupylation should be context specific. The position of pupylation site on the protein sequence (and thus 
protein structure) can decide the function of a pupylation site. For example, the function of a pupylation site on the enzyme’s activity site 
should be different from a site on the protein-protein interaction interface. That’s why we need to know the position of pupylation sites. 
Many pupylation sites are functionally unimportant because they are not associated with other important functional sites. On the other 
hand, genetic screening result in some mutations with altered phenotypes. The explanation of the mechanism underlying these mutations 
sometimes could be hard if we only consider the typical functional sites (e.g. enzyme activity site). The change in pupylation sites could 
be one interesting clue, especially for some proteins from signaling pathways. In general, the pupylation site information can enrich the 
functional annotation of protein sequences.

In pupylation analysis, the consensus motif sequence is calculated based on the most frequent residues, either each nucleotide or 
amino acid, originate at each position in a sequence fragments. Pupylation substrates are susceptible to reversible and dynamic modi-
fications of proteins during protein biosynthesis. Some substrates do not exhibit any significant consensus motif. Even for the one with 
consensus motif, the prediction accuracy by using the consensus motif alone is not satisfactory. The reason is the consensus motif is a 
simplified presentation of binary-encoding-based classifier, which ignores many details. For example, if one sequence position has 70% L, 
25% of A and 5% of F, the significant consensus motif usually gives “L or A”. Two facts were ignored here: 1) L is much more likely than A. 
2) It could be F, though not such often. Therefore, for in silico analysis of pupylation sites, it is a problem if we test specific-species dataset 
using a different species model. In this case false discovery rate could increase, because their sequence patterns are different each other.

Future perspectives

An accurate prediction of pupylation substrate requires detailed information of the structures and functions of pupylated proteins. 
There are still remaining many issues need to be resolved. To assist knowledge discoveries through intensive analysis of vast amounts of 
pupylation data, further improvements are required. The followings are important perspectives for pupylation sites prediction. At first, 
the sequences or structural patterns around the pupylation sites may significantly differ in different species. However, all of the existing 
predictors pupylation disregarded the differences between species by considering combined all species as a generic model to build a 
simplified prediction model. Therefore, the next generation of computational methods needs to generate more accurate models for the 
efficient identification of species-specific prediction sites. Secondly, the performance of prediction is acceptable, but there is still more 
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room to improve. With the growth of lysine pupylation data, more robust prediction tools need to be developed. To further improve the 
prediction accuracy of lysine pupylation sites, scientists need to develop new tools, including the introduction of new classification algo-
rithms and new features. Finally, all the current lysine pupylation site predictors are developed based merely on sequence information. 
With the increase of pupylation site data whose structures are known, we might take structural-based protein pupylation site analyses 
and forecasts into account for more comprehensive understanding of protein pupylation site patterns. We therefore anticipate that bet-
ter prediction methods of pupylation site with improved performance will continue to emerge as increasing amounts of pupylation data.

Conclusions
In this review, the major observations from our analysis are first, across all species no generic best predictor exists for predicting pu-

pylation sites. Secondly, to predict potential pupylation sites in different species scientist should make species-specific classifiers. Finally, 
the performance of the prediction tools developed is acceptable, but the prediction performance can be further improved by integrating 
different sequence encoding schemes. Altogether, in living cells, combining computational and tentative methods will certainly accelerate 
the accumulation of our knowledge on protein lysine pupylation.
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