

3-D Print of Bone Replacement, from 3-D to 4-D Technology

Da-Yong Lu^{1*}, Jin-Yu Che¹ and Shan Cao²

¹School of Life Sciences, Shanghai University, Shanghai, China ²Tong Ji University, Shanghai, China

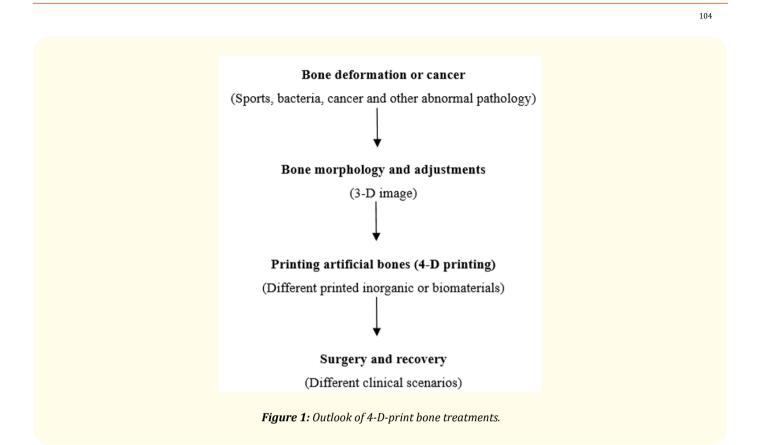
*Corresponding Author: Da-Yong Lu, School of Life Sciences, Shanghai University, Shanghai, China.

Received: March 07, 2022; Published: March 21, 2022

Abstract

Bone replacement will be a reality by modern printing techniques in the future. To promote its development and clinical applications, many new technologies will be built. This editorial discusses this hot topic.

Keywords: Bone Replacement; 3-D Printing; Biomaterials; Modern Technique


Introduction

Human bone is one of the most vulnerable tissues in human bodies. In the life-time of most people, bone fracture, osteoporosis, pain symptoms, cancer and metastasis are frequently met [1-9]. Bone-induced human disable is one of the leading causes for morbidity and mortality.

Modern development

Bone disease commonly needs complicated surgery, long terms of physiological recovery or replacement [10,11]. Among these modern technology, 3-D prints is a promising trend in the clinic [12-14].

Presently, a systematic approach has been made for replacing broken bones with artificial bones. This process may treat a lot of patients in the future (Figure 1).

Discussion

Patients with bone diseases are greatly different in biomaterials. The artificial bone producers may be difficult to provide all these different products. As a result, the content of different biomaterials (4-D printing technology) may determine different treatment outcomes. It needs new investigations and technologies.

Future Trends

In the future, image-based 3-D printers will be used to print artificial bones to replace broken or dead bones. From these efforts, a great difference will be made (from 3-D printing to 4-D printing). In these active areas, math-modality and pharmacology study may be helpful [15,16]. The biomaterials in the printers can have different therapeutic outcomes and bone regeneration.

Conclusion

With the quick developments of 4-D printers, all human bone tissues and joints may be available in a lot of hospitals. This is a great future challenge.

Citation: Da-Yong Lu., et al. "3-D Print of Bone Replacement, from 3-D to 4-D Technology". EC Orthopaedics 13.4 (2022): 103-105.

Bibliography

- 1. Melton J. "Hip fracture; a worldwide problem today and tomorrow". Bone 14.1 (1993): S1-S8.
- 2. Lu DY., et al. "Osteoporosis in old women, therapeutic selection". EC Orthopaedics 9.7 (2018): 386.
- 3. Choudhary D and Alam A. "Anti-osteoporotic activity of bioactive compounds from Iris germanica targeting NK-Kappa B". *EC Pharma*cology and Toxicology 6.8 (2018): 665-678.
- 4. Lu DY., et al. "Osteoporosis, importance for early diagnosis and treatment". EC Orthopaedics 9.9 (2018): 624-625.
- 5. Ban J., et al. "Mechanisms, diagnosis and treatment of bone metastases". Cells 10.11 (2021): 2944.
- 6. Lu DY and Xu B. "Bone metastasis treatment, major frontiers". Acta Scientific Orthopaedics 4.7 (2021): 1-2.
- 7. Hakim BAA. "Benign bone tumors, an overview". Acta Scientific Orthopaedics 4.10 (2021): 1-2.
- 8. Lu DY., et al. "Cancer Metastasis treatments". Current Drug Therapy 8.1 (2013): 24-29.
- 9. Lu DY and Xu B. "Cancer bone metastasis, experimental study". Acta Scientific Orthopaedics 5.12 (2021): 1-3.
- Moore N and Slater GL. "Surgical technique update: Slater modification of minimally invasive brostrom reconstruction". EC Orthopaedics 10.5 (2019): 308-314.
- 11. Lu DY., et al. "Bone disease recovery strategies, An overview". EC Orthopaedics 10.1 (2019): 1-3.
- 12. Che JY and Lu DY. "Bone disease treatment study, major pathways". Acta Scientific Orthopaedics 4.4 (2021): 23-25.
- 13. Lu DY., et al. "Bone replacement by 3-D printing". EC Clinical & Experimental Anatomy 2.8 (2019): 391-393.
- 14. Fang ZX., *et al.* "The development tendency of 3-D printed bioceramic scaffolds for application ranging from bone tissue regeneration to bone tumor therapy". *Frontiers in Bioengineering and Biotechnology* 9 (2021): 754266.
- 15. Lu DY., et al. "Bone disease treatments, math-therapeutic modality". EC Orthopaedics 10.3 (2019): 140-143.
- 16. Lu DY and Che JY. "Drug delivery of bio-molecules". EC Pharmacology and Toxicology 10.2 (2022): 83-85.

Volume 13 Issue 4 April 2022 ©All rights reserved by Da-Yong Lu., *et al.*