
Cronicon
O P E N  A C C E S S ORTHOPAEDICS

Research Article

Mohammad Kamran Shahid* and Shahbaz Malik

Department of Orthopaedic Engineering, University of Cardiff, Wales, United Kingdom

Received: February 03, 2016; Published: February 27, 2016

*Corresponding Author:  Mohammad Kamran Shahid, Department of Orthopaedic Engineering, University of Cardiff, Wales, United 
Kingdom.

A Review of the Biomechanical Role of a Unilateral External Fixator 
in the Fracture Repair Process

Citation:  Mohammad Kamran Shahid and Shahbaz Malik “A Review of the Biomechanical Role of a Unilateral External Fixator in the 
Fracture Repair Process”. EC Orthopaedics 3.1 (2016): 254-260.

Abstract

Introduction 

A unilateral external fixator comprises of a collection of pins, clamps and sidebars to form a construct on one side of the limb that can 
be used to stabilise bone fractures and promote healing. An external fixator can allow the operator to alter the flexibility of the fixa-
tion. In the presence of flexible fixation, fracture healing happens through the creation of callus, which mechanically joins the bone 
together. There are 4 stages to this secondary bone fracture healing to include: inflammation, soft callus, hard callus, and remodelling 
stages. Excessive movement at the fracture site can predispose to non-union and creation of fibrocartilage. However, movement at the 
fracture site is necessary to stimulate the repair process in the early stages and the magnitude of strain at the site of healing has a role 
in predicting the tissue type created e.g. fibrocartilage or bone. The strain (εStrain) at the fracture gap is given by the relationship:

ε Strain = ∆g/g0

The stiffness of the external fixator should not be excessive because in such conditions, it would protect the bone fracture from the 
necessary stresses to promote healing. The stiffness of the external fixator is influenced by the load distribution between the external 
fixator and bone, the pin number and diameter, pin design, pin distance, pin angulation, number of connecting bars, the type of ex-
ternal fixator, and distance between the bone and bars. An ideal external fixator, would have sufficient load distribution between the 
bone and external fixator, utilise a greater number of fully threaded pins (angulated towards the fracture) in each bone fragment of a 
diameter (not exceeding 1/3 the diameter of the bone) and have accompanying carbon bars fixed close to the skin and of the shortest 
length. This construct should provide sufficient stability and stiffness and reduce stress between the pin and bone to prevent failure

The ideal environment for bone fracture repair involves direct contact of the bone fracture ends, axial compression and increased 
rigidity of the fixation. The fixation used should have a rigidity ranging from 20-60% of the normal bone in the bending state to pro-
mote bone stability and healing. This review paper evaluates our current understanding of the biomechanical environment provided 
by an external fixator in the fracture healing process.

An external fixator comprises of a number of pins that are fixed to bone with numerous clamps and sidebars, which attach to form a 
construct allowing significant variability (Tencer 2006). It has an important role in fracture fixation as they cause limited damage to the 
soft tissues and neurovascular structures in comparison to internal fixation using plates. Goatokis and Naravan (2007) describes that it 
can be used in the trauma situation for definitive management, or allow time for soft tissue problems to be addressed prior to internal 
fixation. There are many different types to include the unilateral external fixator, which is one placed on one side of the limb (Fragomen 

Keywords: External fixator biomechanics; Fracture healing

This is calculated from the change in size of the fracture gap (∆g) from the applied force divided by the original size (g0).
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Unilateral external fixators can create a mechanical environment that can vary in biomechanical properties due to the variability in 
the construct of the external fixator. This assignment will look at how such devices can influence the fracture repair process.

The review of literature was performed through the PubMed database and used key words including: ‘external fixator’, ‘external fix-
ator biomechanics’, and ‘fracture healing’. The exclusion criteria included: articles not in English and where there was no mention of bio-
mechanics in the article. Materials also accessed were referenced online tools for information and clinical and anatomical text books.

Bone healing of a fracture can be classified as primary or secondary. Palmer., et al. (1992) describes primary bone healing where 
there is no formation of callus and requires absolute stability with or without compression of the bone ends. This contrasts to secondary 
bone healing where there is formation of callus. Callus forms due to the fixation not allowing sufficient reduction of the fracture so bone 
ends in the gap are not within close proximity enough to induce direct placement of bone (Palmer., et al. 1992). 

An external fixator permits the operator to have a role in altering the flexibility of the fixation. Ruedi and Murphy (2000) describe 
that bone healing in the presence of flexible fixation happens through the creation of callus, which mechanically joins the bone together. 
They describe that a flexible fixation can allow the fractured bones to displace under the influence of a load over the fracture site. There-
fore as the load is increased, elastic deformation is initially observed, where once the load is removed, the fracture ends return to the 
normal position (Callister 2007). When the load is increased above the ultimate tensile stress, plastic deformation is observed where the 
fracture bones stay permanently displaced. External fixation can be observed to act as a splint and although load can increase displace-
ment, this can decrease based on the rigidity of the construct (Ruedi and Murphy 2000). 

The review of literature was performed through the PubMed database and used key words including: ‘external fixator’, ‘external 
fixator biomechanics’, and ‘fracture healing’. 

and Rozbruch 2007). Such fixators can ensure that the limb continues to be functional and ensures stability for the fracture. Unilateral 
external fixators can take two forms: 

A.     An external fixator that has been pre-made but allows change to enable a fracture to be reduced and dynamisation.
B.     An external fixator that is made from a selection of components after pins have been inserted allowing greater variability to the 
        design constructs to address the clinical problem. (Goatakis and Naravan 2007).

Figure 1:  A unilateral External Fixator used here for fracture management (Slatter 2002).

Material and Method

Results and Discussion

Fracture healing
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Nordin and Frankel (2001) describe that excessive movement at the fracture site can predispose to non-union and creation of fibro-
cartilage tissue. However there is a certain threshold of movement or micromotion that can act as a stimulator for the healing process. 
Jagodzinski and Krettek (2007) argue that movement has a positive role in healing during the early stages but can inhibit healing during 
the later stages. It is thought that the magnitude of strain at the site of healing has a role in predicting the tissue type created e.g. fibro-
cartilage or bone and is currently under investigation (Nordin and Frankel 2001).

An ideal external fixator should not be excessively stiff, as then the fracture would be protected from the necessary stresses to pro-
mote healing (Bucholz., et al. 2006). The ideal stiffness required is unknown but the ideal amount necessary for fracture stability and 
promoting bone healing changes as the fracture heals. Bucholz., et al. (2006) further describes that the stiffness should be sufficient to 
overcome the forces a patient is subjected to during mobilisation to prevent fracture displacement. Bone healing can be achieved by 
external fixation under close observation and may involve changing the stiffness of fixation during the treatment course. The stiffness 
of the external fixator is influenced by the load distribution between the external fixator and bone, the pin number and diameter, pin 
design, pin distance, pin angulation, number of connecting bars, the type of external fixator, and distance between the bone and bars 
(Palmer., et al. 1992).

Mechanical Environment for External Fixator

We will look at secondary bone healing here which has 4 stages to include: inflammation, soft callus, hard callus, and remodelling 
(Ruedi and Murphy 2000):
1.     Inflammation stage: Initially post fracture, the fracture site fills with blood and the broken bone ends demonstrate necrosis. 
        (Dandy and Edwards 1998). This haematoma is infiltrated with inflammatory cells e.g. macrophages and is slowly transformed to 
        granulation tissue. Osteoclasts have a role by removing the dead bone (Ruedi and Murphy 2000).
2.     Soft Callus stage: Approximately 2-6 weeks post fracture, soft callus forms (Dandy and Edwards 1998). This is marked by fibrous 
        tissue forming in place of the haematoma and characterised by a significant increase in blood supply to the fracture callus and 
        marked cellularity (Ruedi and Murphy 2000). Dandy and Edwards (1998) describe that the callus forms around the bone under-
        neath the perisoteum and contains chondroblasts between the fracture ends.
3.     Hard Callus stage: This is characterised by mineralisation of the fibrous tissue and fibrocartilage leading to creation of bone, which
        can take months to occur (Palmer., et al. 1992). It begins in an area distant from the fracture site and slowly progresses towards 
        this area.
4.     Remodelling stage: Occurs months to years after the fracture has solidified up until the bone architecture returns to its original 
        prior to fracture. Ruedi and Murphy (2000) describe that the cancellous bone is transformed into lamellar bone over time.

Figure 2:  External fixator demonstrating some of the variables 
that can influence stiffness (Nordin and Frankel 2001).
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When an external fixator is in use, there can be a difference in the amount of load distributed between the external fixator and the 
bone. If there is a fracture that has been reduced satisfactory and the fracture site is compressed, then a significant magnitude of the 
ground reaction force (assuming lower limb bone with weight bearing status) can be distributed axially through the bone (Palmer., et 
al. 1992). In an ideal situation, there needs to be sufficient sharing of the load between the external fixator and bone to help reduce the 
stress between the bone and pins. There are situations where compression cannot occur e.g. comminuted fractures, and so the ground 
reaction force is transmitted from the bone to the external fixator via its components. Nordin and Frankel (2001) describe that in such 
situation, bone resorption is likely to occur due to the “unloading of bone around the device’’. This is thought to follow Wolff s Law which 
describes that remodelling of bone occurs determined by the mechanical forces it experiences (Wolff 1892). There can be situations 
where partial-load sharing occurs, especially when fractures are oblique where the external fixator neither compresses nor holds the 2 
fracture ends apart (Palmer., et al. 1992). Such situations are demonstrated in Figure 2.

As the number of pins used is increase, the overall stiffness of the external fixation to bone is increased because there is now sharing 
of the forces that act upon it amongst the pins leading to decrease stress at each pin (Moss and Tejwani 2007). However, this cannot be 
ideal in scenarios where there is non-load sharing as studies show that plastic deformation occurs of the connecting bar at the region 
of the fracture site at increased axial compressive loads (Palmer., et al. 1992). Therefore in such cases it was found that increasing pin 
number from 2 to 4 for each bone piece, it did not increase the stiffness of the external fixator whilst utilising 1 bar. Palmer., et al. (1992) 
describes that as we increase the number of pins to 4 for each bone piece in this case, whilst utilising 2 bars, one can increase the ‘’axial 
compressive stiffness’’ of the fixator by a factor of 2.

Moss and Tejwani (2007) describe that the diameter of a pin can influence stiffness, which is directly proportional to the radius4. 
Therefore as we increase the pin diameter from 3 to 6mm, the stiffness increases by a multiple of 16. Hence, the largest pin diameter 
should be considered that is less than 1/3 the bone diameter to decrease risk of pin-hole fractures (Moss and Tejwani 2007).

The pin design is important as there is significant stress at the junction between the pin and bone in the external fixator construct, 
which can be responsible for early loosening of the pin and failure. Palmer., et al. (1992) describes that threaded pins are more likely 
to grip the bone with respect to unthreaded ones and are more stiff. However, when taking pin diameter into account, it is noted that 

Figure 3:  External fixator demonstrating 3 situations whilst stabilising midshaft tibia fracture:  
ideal load sharing fixation; nonload sharing fixation; and partial load-sharing fixation (left to 
right).  Arrows show transmission of the the ground reaction force.  (Palmer., et al.  1992).

Load Distribution between bone and external fixator

Number of Pins

Pin Diameter

Pin Design



A Review of the Biomechanical Role of a Unilateral External Fixator in the Fracture Repair Process
258

Citation: Mohammad Kamran Shahid and Shahbaz Malik “A Review of the Biomechanical Role of a Unilateral External Fixator in the 
Fracture Repair Process”. EC Orthopaedics 3.1 (2016): 254-260.

The distance between the pins in each bone piece and from the fracture affects the stiffness of the construct. Palmer., et al. (1992) 
describes the relationship of the bending stiffness of the connecting bar being inversely proportional to its length3. This means that one 
can ensure that the bar is shorter by inserting pins near the fracture and so obtaining more stiffness. Placement of pins too close to the 
fracture may introduce bacteria from the external environment and so pin placement needs careful thought and planning. The other 
pins should be equally placed within each bone piece to maintain stability at the fracture site.

The angle of insertion of pins into the bone can increase the stiffness of the external fixator construct. Approximately 20 degrees 
of angulation towards the fracture on either side can increase the stiffness of the fixator and is associated with a lower chance of pin 
loosening (Palmer., et al. 1992)

Connecting bars act as a bridge between the pin sites to hold and maintain stability of the external fixator. Kowalski., et al. (1996) 
discovered that bars made of carbon were 15% more stiff than stainless steel types which became plastically deformed when given a 
bending moment of 2250 Nm. As carbon bars demonstrated elastic deformation during testing, the recommendation is to use these 
over the stainless steel types. The use of 2 bars to the fixation has the added advantage of increasing strength by up to 2 fold against 
axial compression and plastic deformation of the bar and pins (Palmer., et al. 1992). It has also been shown that by use of 2 connecting 
bars, one can improve bending stiffness by 20% in both the ipsilateral plane and at 90 degrees to the external fixator (Behrens and 
Johnson 1989)

We have been restricted to looking at the unilateral external fixator in this assignment, which is placed on one side of the limb. There 
are variations of this unilateral fixation in terms of one plane or 2 plane configurations. To achieve a 2 plane external fixator, a new ex-
ternal fixator is applied but at 90 degrees to the previous one. Moss and Palmer., et al. (1992) have showed that the 2 plane fixation has 
greater strength against axial compression and torsional forces.

The ideal environment for bone fracture repair involves direct contact of the bone fracture ends, axial compression and increased 
rigidity of the fixation (Lucas., et al. 1998). Lucas., et al. (1998) describes that both the fracture gap size and the influence of movement 
at the fracture site can determine the tissue that is created there. Figure 4 demonstrates the strain in the fracture gap of bone stabilised 
with external fixator, with a superimposed exaggerated gap created due to the action of a force.

Strain can be calculated from determining the change in size of the gap from the applied force divided by the original size (Callister 
2007). Lucas., et al. (1998) describes in Table 1 that for a given gap size, the type of tissue that can be predicted to form within the 
fracture gap at variable strain ranges 

The bar should be positioned in close proximity to the skin in order to reduce the pin working length. Palmer., et al. (1992) describes 
that this can result in stress reduction between the pin and bone and reduce the chance of pin failure.

threaded pins are less stiff than non-threaded pins of the same outer diameter and so this need to be accounted for in determining the 
ideal pin design. Bindra (2005) describes that pins are now constructed with a larger core diameter but less core-thread diameter dis-
tance to allow the pin to sustain bending forces. Therefore when the pin is fixed to both cortices, forces causing the pin to pull out act 
mainly at the distant cortex and bending forces at the near cortex. Hence, an ideal design suggested is a short threaded pin inserted into 
both cortices where the thread holds the far cortex and the wider shaft holds the near cortex (Bindra 2005). 

Pin Distance

Pin Angulation

Connecting Bars

Type of external Fixator

Biomechanics of fracture healing

Distance between bone and Bars
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Figure 4: A bone stabilised by external fixator with a superimposed picture of exaggerated 
displacement from the action of force shows the strain in the fracture gap (∆g/g0) formulated 
from the initial gap size and displacement gap size (Lucas., et al.  1998).

Strain at Fracture 
gap (%)

Tissue Predicted

10-100 Granulation tissue
2-10 Fibrocartilage
2 Bone

Table 1:  The tissue predicted within the fracture gap for 
different strain ranges at the gap. (Lucas., et al.  1998).

In environments where strain is greater than 10%, the granulation tissue that forms closing the space at the fracture site, can subse-
quently reduce the strain, allowing fibrocartilage or bone to be created. However, Lucas., et al. (1998) describes that if the threshold of 
strain exceeds that of the tissue created, it can lead to further injury resulting in the formation of a pseudoarthrosis.

The overall objective is to reduce the fracture as best as possible and to regulate the movement at the fracture gap to ensure that 
healing occurs with bone and so there are no preceeding steps. The external fixator should stabilise the fracture to have a stiffness or 
rigidity between 20-60% of the normal bone in the bending state (Lucas., et al. 1998).

A unilateral external fixator can create a mechanical environment to help heal bone fractures typically by secondary bone healing in 
suitable patients. It can allow the operator to alter the flexibility of the fixation allowing healing to occur through the formation of callus. 
Movement up to a certain threshold at the fracture site can have a bone healing promoting effect in the early stages and the magnitude of 
strain at the bone healing site, can predict the tissue type created. The strain (ε Strain) at the fracture gap is given by the relationship:  

εStrain = ∆g/g0            (Lucas., et al. 1998)

Conclusion
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This is calculated from the change in size of the gap (∆g) from the applied force divided by the original size (g0).

The ideal environment for bone fracture repair involves direct contact of the bone fracture ends, axial compression and increased 
rigidity of the fixation (Lucas., et al. 1998). The fixation used should have a rigidity ranging from 20-60% of the normal bone in the bend-
ing state to promote bone stability and healing.

An ideal external fixator should not be excessively stiff as then this situation would protect the fracture fixation from the necessary 
stresses that would promote healing. The stiffness of the external fixator is influenced by the load distribution between the external 
fixator and bone, the pin number and diameter, pin design, pin distance, pin angulation, number of connecting bars, the type of external 
fixator, and distance between the bone and bars (Palmer., et al. 1992). Such variations in the external fixator can all contribute to creat-
ing the ideal mechanical environment to allow healing if used in expert hands.

Bibliography

1.     Behrens F and Johmson W. “Unilateral External Fixation.  Methods to increase and reduce frame stiffness”. Clinical Orthopaedics 
        and Related Research 241 (1989): 48-56.
2.     Callister WD. “Materials Science and Engineering An Introduction”.  New York: John Wiley and Sons.  (2007).  
3.     Dandy DJ and Edwards DJ. “Essential Orthopaedics and Trauma”.  London: Churchilll Livingstone (1998).
4.     Fragomen AT and Rozbruch SR. “The Mechanics of External Fixation”. The musculoskeletal Journal of Hospital for Special Surgery 
        3.1 (2007): 13-29. 
5.     Goatokis N and Narayan B. “Stability with unilateral external fixation in the tibia”.  Journal of strategies Trauma Limb Reconstruc-
        tion 2.1 (2007): 13-20.
6.     Jagodzinski M and Krettek C. “Effect of mechanical stability on fracture healing-an update”.  Injury 38.1 (2007): S3-10.
7.     Kowalski M., et al. “Comparative biomechanical evaluation of different external fixation sidebars: Stainless-steel tubes versus 
        carbon fiber rods”. Journal of Orthopaedic Trauma 10.7 (1996): 470-475.
8.     Lucas GL., et al. “A primer of Biomechanics”. Germany: Springer Verlag (1998).  
9.     Moss DP and Tejwani NC. “Biomechanics of External Fixation”. Bulletin of the NYU Hospital for Joint Diseases 65.4(2007): 294-299.
10.   Nordin M and Frankel VH. “Basic Biomechanics of the Musculoskeletal System”. Philadelphia: Lippincott Williams and Wilkins.
11.   Palmer RH., et al. “Principles of bone healing and biomechanics of external fixation”. Veterinary Clinics of North America: Small 
        Animal Practice 22.1 (1992): 45-68.
12.   Ruedi TP and Murphy WM. “AO Principles of Fracture Management.  New York:  Thieme Stuttgart.
13.   Slatter DH. “Textbook of small animal Surgery”.  Philadelphia: WB Saunders (2002).
14.   Tencer AF Biomechanics of Fixation and Fractures. In: Bucholz RW. eds.  Rockwood and Green’s Fracutures in Adults. 6th ed. Phila-
        delphia: Lippincott Williams and Wilkins (2006): 4-38.
15.   Wolff, J.  1892.  Das Gesetz der Transformation der Knochen.  Berlin:  Hirschwald. 

Volume 3 Issue 1 February 2016
© All rights are reserved by Mohammad Kamran Shahid and Shahbaz Malik.


