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The management of chondral lesions is still a clinical 
challenge for orthopaedic surgeons. Articular cartilage is 
a well-organized tissue with a very low self-regeneration 
capacity due to its avascular nature. Therefore, the repair 
of damaged articular cartilage is critical to prevent further 
deterioration and the progression of osteoarthritis (OA) 
[1]. Current surgical treatment options for cartilage re-
pair lesions include autologous chondrocyte implantation 
(ACI), autologous osteochondral graft transplantation, ar-
throscopic debridement, microfracture surgery, and finally, 
prosthetic joint implantation for severe joint degeneration 
[2]. However, these surgical interventions are not long-term 
clinical solutions due to unsuitable donor tissue availabil-
ity, the formation of non-functional fibrocartilage with in-
ferior mechanical properties, donor site morbidity, or the 
limited durability of the implanted prosthesis [3]. To over-
come these drawbacks, new tissue engineering approach-
es directed to reconstitute the natural structure and func-
tion of cartilage are needed. Promising strategies involving 
transplantation of engineered cartilage substitutes require 
the association of three critical ingredients: cells, bioactive 
factors and biomaterials (Figure 1) [4,5]. 

The main cell sources used in cartilage tissue engineer-
ing approaches include stem cells and primary cells, such as 
chondrocytes [6]. Nevertheless, the limited number of adult 
articular chondrocytes that can be harvested from native 
cartilage and the differentiation process that chondrocytes 
undergo during in vitro expansion limit their use [7]. On the 

other hand, stem cells can be easily isolated and grown ex 
vivo, which make them ideal for cell based therapies. Fur-
thermore, stem cells have the ability to self-renew and the 
capacity to differentiate into multiple types of specialized 
cells including: chondrocytes, osteocytes, adipocytes and 
myocytes. In particular, adipose stem cells (ASCs) repre-
sent a promising cell source for treating chondral defects 
as a large number of cells can be obtained through a simple 
liposuction [8,9].

Figure 1: Tissue engineering strategies for the regeneration 

of chondral lesions. 

Biological signals play a critical role in the differentiation 
of stem cells into the chondrogenic lineage. Several growth 
and transcription factors are involved in cartilage devel-
opment at different specific stages and levels. Among the 
most commonly signaling molecules used to guide cells to 
a differentiated chondrogenic phenotype are: transforming 



Cartilage Tissue Engineering Approaches: Current Therapies and Technological Advances

Citation: Elena López Ruiz. “Cartilage Tissue Engineering Approaches: Current Therapies and Technological Advances”. EC  

Orthopaedics ECO.01 (2017): 08-10.

09

growth factor-β (TGF-β) subfamily members, insulin-like 
growth factors (IGFs), fibroblast growth factors (FGFs), 
bone morphogenetic proteins (BMPs), and sex determin-
ing region Y (SRY)-box (SOXs). In fact, a strategy to improve 
bioactivity of scaffolds designed for cartilage tissue repair is 
the control of growth factors/drug delivery within the engi-
neering scaffolds [10].

Environmental factors, such as oxygen, mechanical strain 
and pressure are also involved in the chondrocyte differen-
tiation process, becoming the control of these factors vital 
for tissue engineering approaches [11]. In this sense, nov-
el bioreactor systems, together with mathematical model-
ing of their characteristics, have been recently developed. 
Indeed, in order to recreate biological and biomechanical 
properties of native cartilage bioreactors have emerged 
as valuable devices for stimulate cell ingrowth in 3-D con-
structs with a variety of physical cues, including compres-
sion, hydrostatic pressure, or fluid shear stress [12].

Finally, an ideal scaffold for cartilage tissue engineering 
should be (i) biocompatible, to minimize any immunolog-
ical responses and to favors cell growth and integration 
with the adjacent tissue; (ii) biodegradable, with a gradual 
and controlled resorption following new tissue formation; 
(iii) porous, to promote exchange of nutrients, gases, and 
wastes and (iv) structurally and mechanically compatible to 
support tissue growth and to withstand the weight-bearing 
forces in the articulation [13]. A variety of natural and syn-
thetic biomaterials have been used to fabricate scaffolds for 
cartilage tissue engineering. Among the natural materials, 
collagen and hyaluronic acid, normal constituents of the ar-
ticular cartilage extracellular matrix, have been extensively 
tested. Other natural materials include agarose, alginate, 
and chitosan [14]. Regarding synthetic polymers, the most 
widely used include poly(glycolic acid) (PGA), poly(lac-
tic acids) (PLA), poly(lactic-co-glycolic acid) (PLGA), and 
poly(ε-caprolactones) (PCL). The combination of both natu-
ral and synthetic biomaterials improve the biocompatibility 
and enhance the mechanical properties of the scaffold [15].

To date, a range of techniques has been employed for 
manufacturing cartilage tissue constructs. Conventional 
production methods for three dimensional (3D) scaffolds 
include: electrospinning, fiber deposition, freeze-drying, 

gas foaming and salt leaching [16]. However, these tech-
niques lack precise control of internal structural features 
and topology. Current research involves the use of technol-
ogies with higher precision that allow the reproducibility 
of the resulting implants. In this sense, 3D bioprinting, has 
emerged as an exciting and innovative manufacturing tech-
nology that enables the distribution of different cells and 
supporting biomaterials to create organized 3D tissue con-
structs with high spatial resolution [17]. 3D bioprinting has 
been successfully used to create a variety of cartilage scaf-
folds by using a variety of materials that have been used in 
FDA-approved devices/systems [18]. In addition, cartilage 
structures can be 3D printed using MRI and CT images as 
blueprints permitting the production of cartilage construct 
with a specific size and shape to fit the cartilage defected 
area [19,20].

In conclusion, tissue engineering strategies have rapidly 
evolved and have great potential for the translation of carti-
lage regeneration treatments into the clinic. However, more 
research is needed to determine what combinations of 
materials, cells and biofactors are necessary to induce and 
maintain a functional and stable tissue that better mimics 
native cartilage. Furthermore, more focus must be paid to 
the mechanical properties, shape, organization and degra-
dation rate characteristics of scaffold-based approaches to 
improve cartilage tissue repair and regeneration.
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