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The Biomechanical Forces that Act on the Elbow Joint

Abstract

There is a wide range of stabilizing and active factors required for the use of the elbow in activities of daily living. These then reflect 
on understanding in the management of elbow disorders, of which elbow prostheses are looked at here. The joint is maintained by 
the integrity of the capsuloligament and the muscles proximal and distal to the joint. Studying biomechanics includes looking at the 
forces acting through the elbow joint, the kinematics and the maintenance of elbow stability through action of active and passive 
stabilizers.

Each force exerts a moment through a moment arm, which can be represented by a free body diagram (Figure 1). Elbow flexion and 
extension occurs around an instant center of rotation involving an area of 2 to 3 mm in diameter at the trochlea. Pronation and su-
pination are important for function, and the axis of movement is a longitudinal axis from the centre of the radial head to the centre 
of the ulna head. Active stability is maintained through action of muscles providing joint compressive forces. Passive stability arises 
from the humerus articulating very congruently with the ulna and the role of surrounding soft tissue stabilizers to include the lateral 
and medial collateral ligament complexes. 
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The elbow joint is a complex structure that acts as an important mechanical link in the upper extremity between the shoulder and 
wrist [1]. It is dynamic, allowing movement at the joint to facilitate arm movement [2], it is static, providing an anchor for movements [3] 
and a high level of understanding is required when disrupted, allowing physicians and patients to appreciate how important the joint is to 
everyday function [4,5]. This in turn allows research into complex solutions in elbow treatment and rehabilitation [6,7].

The elbow joint comprises of 3 parts: the radio humeral joint - allows movement between the radius and humerus, the ulnohumeral 
joint - between the ulna and humerus, and the superior radioulnar joint - between the radius and ulna, which are all contained within the 
same joint capsule [8].

The main movements occurring at the elbow joint are flexion, extension, pronation and supination [9]. The ulnohumeral and radio 
humeral joints act as a ‘modified hinge joint’ [8,10] allowing range of motion from 0° to approximately 145° in the normal patient [11]. 
Flexion here is due to the action of biceps, brachialis and brachioradialis muscles. Extension is achieved from the action of the triceps 

Introduction

This review paper evaluates the current literature regarding elbow biomechanics.
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The review of literature was performed through the PubMed database and used key words including: ‘Elbow’, ‘elbow biomechanics’, 
‘elbow prosthesis’, ‘elbow joint replacement’, ‘elbow kinematics’.

The review of literature was performed through the PubMed database and used key words including: ‘Elbow’, ‘elbow biomechanics’, 
‘elbow prosthesis’, ‘elbow joint replacement’, ‘elbow kinematics’.

The exclusion criteria included: articles not in English and where there was no mention of elbow biomechanics within the article.

Materials also accessed were referenced online tools for information and clinical and anatomical textbooks. 

The biomechanics of the elbow joint are all affected by the bones, muscles and ligaments involved [15]. Weakness in muscle or injury 
to ligaments can result in abnormal forces in the elbow, which can ultimately over time cause degeneration of the articular cartilage of 
bone [13]. 

Excessive movement or force applied to the elbow can injure these structures. Loftice., et al. [10] describes biomechanics as the ‘sci-
ence that examines forces acting upon and within a biological structure and effects produced by such forces.’ This review attempts to 
explore the literature regarding the biomechanical forces that act on this elbow joint, which in combination with anatomy is essential for 
the optimum management of elbow disorders.

One can apply the basic principles of statics to the elbow joint to analyze the effects created by acting forces and moments. Lucas., 
et al. [17] suggests a free- body diagram can be useful (Figure 2). On the diagram, it is assumed that the wrist, hand and finger joints are 
all rigidly fixed. Forces have shown acting on the free body including the joint reaction force R acting between the ulna and the humerus, 
and the force acting through the biceps muscle B. 

Capo., et al. [18] has explored three dimensional analysis of soft tissue footprints and anatomy through nine cadaveric dissections 
providing mean quantitive data E.g. medial collateral ligament mean origin (humeral) footprint area of 216 mm2. This can provide useful 
information to the surgeon in helping to restore normal elbow biomechanics and preserve range of motion.

muscle located in the posterior aspect of the arm [12]. Supination and pronation occurs at the superior radioulnar joint which acts 
as a ‘pivot’ joint [13] and normal values quoted are approximately 75° pronation and 80° supination [11]. Supination is achieved through 
action of biceps and supinator muscles whereas pronation requires the use of pronator teres, pronator quadratus, and flexor carpi ra-
dialis muscles [8]. The forearm is angled slightly away from the long axis of the humerus in full extension. This is known as the ‘carrying 
angle’ and has a mean angle of 12.7 degrees +/-3.8 degrees [14].

Figure 1:  Free body diagram showing forearm holding a ball [16].
The biomechanical forces that act on the elbow joint.

Materials and Methods

Results and Discussion

Static Analysis of the Elbow Joint
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In the free body diagram, G is the weight of the forearm acting vertically downwards, B is the biceps force, and R is the joint reaction 
force. To generate an idea of what possible force prosthesis needs to sustain, it is important to know: the relationship between forces 
acting through biceps and gravitational force through the hand as well as joint reaction force. Lucas., et al. [17] describes using a similar 
model to that above of the elbow that the force in the biceps is roughly 10 times that held in the hand. 

This was calculated by taking moments about the elbow, taking into account that the joint reaction force has a moment arm of zero 
and so creates no moment about the joint axis.

Using the force through the biceps, one can then take moment in the ‘y-axis’ direction where the sum of the moments are equal to 
zero.

i.e., sum of moments in ‘y direction = 0 = - R+ B- G – W

Figure 2:   A: Arm flexed at 90° at the elbow, with wrist and fingers rigid, holding a ball in palm of hand. 
B: Free body diagram showing forearm holding a ball [16].

i.e., Moments about Elbow joint = 0 = (B × D1) – (G×D2) – (W × D3)
D1, D2, D3 are perpendicular measured distances from the elbow joint.
G is the weight of the humerus.
W is the weight of a mass in the hand. 

From the above equation, we can calculate R from the known values of B, G and W. Lucas., et al. [17] describes that using weights 
and flexing at the elbow, the forces passing across the articulating surface of the elbow will be approximately 8.5 times the weights in his 
hand. This occurs from taking moments of all forces acting about the forearm taking account of the distances from the elbow joint where 
they all act. Morrey., et al. [19] described that 60% of the axial load at the elbow joint will be transmitted through the radio humeral joint, 
which compares with 40% through the ulnohumeral articulation.

Significant compressive and shear forces occur at the elbow joint [20-22]. The joint reaction forces vary with elbow position [23], it 
has been shown that the force transmission is greatest between 0 and 30 degrees of flexion and is greater in pronation than supination 
[22]. With the elbow extended, the overall force on the ulno-humeral joint is concentrated on the coronoid. In flexion, this force moves 
towards the olecranon.

Dynamic Loads at the Elbow



The Biomechanical Forces that Act on the Elbow Joint
4

Citation: Mohammad Kamran Shahid., et al. “The Biomechanical Forces that Act on the Elbow Joint”. EC Orthopaedics 1.1 (2015): 
1-11.

Some studies have shown that the greatest amount of force is generated with the initiation of flexion [24]. Calculations suggest that 
about three times the body weight may be transmitted across the elbow joint when it is flexed at 90 degrees [24]. The forces involved, 
and the reaction to the action may contribute to the degeneration seen in arthritis.

Knowledge of the changes in extremes of load at the elbow also has a role in the prevention and treatment of injuries in athletes 
[28]. The patterns afforded by the analysis of stiffness around the joint changing with task may allow prediction of the injury sustained 
by repeated force such as in throwers, confirmed with clinical and radiological assessment [29]. In these cases, valgus and extension 
loads may be the culprits, with requirements of return to function higher than the normal elbow injury [30].

McRae [11] has reported that the normal elbow joint allows flexion and extension from 0° to 140° and the functional range of mo-
tion to perform activities of daily living is described by Morrey., et al. [15] to be in the 30° to 130° range. It has been shown that elbow 
flexion and extension occurs around an ‘instant center of rotation involving an area of 2-3 mm in diameter at the trochlea’ [1]. Morrey., 
et al. [31] has shown that the ulnohumeral joint also has 6° axial rotation due to the obliquity of the trochlea groove. These findings are 
important in consideration for designing elbow implants to try to restore anatomy and biomechanical properties as close as possible 
to the original joint.

Pronation and supination of the elbow also needs to be considered. The axis of movement for pronation and supination is a longitu-
dinal axis from the centre of the radial head to the centre of the ulna head [35]. According to Naig [36], the radius and ulna lie in parallel, 
but in supination, the radius crosses over the ulna and during pronation, its head does move distally and dorsally. There is movement of 
the ulna proximally and medially and of the radius proximally in pronation and distally in supination [37].

It is reported that [38], with an approximate degree of pronation of 80 to 90 degrees and approximate supination of 90 degrees, the 
average rotation is 180 degrees [39]. Supination is an elbow driven movement, and the substitution allowed through shoulder abduc-
tion in pronation does not exist for supination [40]. 

Ibanez-Gabeno., et al. [41], looking at the role of pronator teres and the forces through it, found that the maximal efficiency is the 
highest in full elbow flexion and close to forearm neutral position for each elbow angle. The vertical component of pronator teres is the 
highest among all components and is greater in pronation and elbow extension, as well as there being effects from movement further 
down the forearm to wrist [42].

According to Laksanachareon and Wongsiri [43] we find that the average torque created at the elbow joint is 7 kg-m in male and 3.5 
kg-m in female with the elbow at 90 degrees flexion. However, in extension, the torque is less and noted to be 800-900 g-m in male, 350-
500 g-m in females. Measurement of torque is changing with assessment of the analysis processes [44]. Morrey., et al. [45] describes 

Willing., et al. [32] described the use of computational models to predict the range of elbow motion calculated from computed to-
mography image data. This data could be useful in assisting surgeons in improving the outcomes of surgical treatment of patients with 
elbow contractures. 

Allied to this, is the physiotherapy side of rehabilitation and the knowledge of the extremes of movement, while aware of the degree 
of motion required nominally may improve outcome further down the line of recovery [33,34]. 

Assessment of physiological patterns at a frequency to potentially simulate daily movements of the elbow via testing machine [25] 
and via three-dimensional video analysis [26] may have a role in assessing implants for use in joint reconstruction.

This may include in the choice and angulation of plates for injuries around the joint. This is turn may affect the success or otherwise 
of rehabilitation and maintenance of function [27]. 

Flexion and Extension

Pronation and Supination
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that at 0° to 30° flexion the forces through the radial head were of greatest magnitude and much greater in pronation (Figure 3). This 
occurs because the direction of the joint reaction force changes with the angle of flexion, becoming more posterior with elbow flexion 
and anterior with elbow extension [1]. Figure 4 demonstrates that force vectors acting at the elbow change with flexion angle. 

Figure 3: Magnitude of force across radial head is higher with pronation, suggesting radial head moves more proximally with 
pronation [19].

Figure 4: Force vectors change with flexion angle [55].

The biomechanical stability of the elbow joint is maintained through action of both active and passive stabilizing structures [1]. 

Active stability is achieved through action of muscles providing joint compressive forces [46]. A number of muscles cross the elbow 
joint [8], which on contraction can create forces in the region of the humerus, radius and ulna inside the joint. Alcid., et al. [47] has 
reported that the congruity of the articulations as well as well as the medial and lateral collateral ligament complexes account for the 
majority of the joint stability [48]. The muscles have an important dynamic role in stabilising the joint.

Amis and Miller [49] describe that at near full extension of the elbow, the forces were observed to be greatest axially at the distal 
humerus and such forces decrease with increasing elbow flexion. Amis., et al. [50] has shown the joint compressive forces in the sagittal 
plane acting on the distal humerus in both flexion and extension. Figure 5 has shown the size and direction of such forces acting at the 
distal humerus.

Elbow stability
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Figure 5:  A: Magnitude and direction of forces at distal humerus during flexion.
B: Magnitude and direction of forces at distal humerus during extension [19].

Figure 6: Removing segments of ulna demonstrates linear decrease in elbow stability in both extension and 90° flexion [1].

Passive stability arises from the humerus articulating very congruently with the ulna and the role of surrounding soft tissue stabi-
lisers e.g. collateral ligaments. The ulna has a very important role and has been shown by An., et al. [51] that by removing increasing 
segments of the proximal ulna, a linear decrease in stability is observed both in flexion and extension (Figure 6).

Schueller-Weidekamm and Kainberger [52] describe that the pattern of injury that occurs in specific sport activities are related to 
movement overload that results in tensile forces and or compression and shear stress. Acute symptoms were described to arise from 
degeneration of the tendons and ligamentous structures due to repetitive microtrauma from overuse syndrome [53,54].

Fornalski., et al. [1] describes that in both extension and flexion, that the proximal half of the sigmoid notch could absorb 75-80 per-
cent of valgus stress. This contrasts to the distal half of the sigmoid notch (coronoid) which resists 60 percent of varus stress in flexion 
and 67 % in extension [51]. Instability at the elbow increases with the removal of increasing segment lengths of coronoid. Removal of 
the radial head leads to such instability being more pronounced with less removal of coronoid and is visible in Figure 7.
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Figure 7:  A: Ulnohumeral instability rises with increasing coronoid removal and the protective role of radial head until almost 
full extension.
B: Post removal of radial head, ulnohumeral instability present with less coronoid removal [1].

Passive stability is also achieved through action of soft tissues stabilising the joint to include the medial and lateral collateral liga-
ment complexes and the anterior capsule [55]. Peimer [56] describes that stability against varus stress occurs through action of the 
lateral ulnar collateral ligament. The lateral collateral ligament complex also comprises of the annular ligament, accessory lateral col-
lateral ligament, and the radial collateral ligament [19]. The site of origin of both the medial and lateral collateral ligament complex is 
different where the lateral collateral ligament arises from the lateral condyle at the point of axis of rotation of the elbow and the medial 
complex away from the axis of rotation [57,58]. Hence, the lateral collateral ligament is in equal tension along its length, throughout 
range of motion of the elbow. However, the medial collateral ligament which comprises of 2 components, has an anterior band which 
undergoes tension in extension, and a posterior band with tension in flexion [59]. Fornalski., et al. [1] explains that as the 2 components 
of the medial complex do not originating from the axis of elbow rotation, there is not equal tension throughout their length during 
flexion and extension [60].

The anconeus muscle has an important role in elbow stability [61]. Pereira [62] describes the function of the posterior and deep 
anconeus as an elbow extensor decreasing in influence with increasing elbow flexion angle. The anterior superficial aspect, which is 
adjacent and parallel to the lateral collateral ligaments, would most likely work in unison to provide constraint to the posterolateral 
stability of the elbow [63].

Elbow joint replacement involves replacing the bones that make up the elbow joint with artificial prosthetic components. Amis., 
et al. [50] describes how an elbow joint prosthesis may be loosened by a combination of tensile and torsion forces. They also add that 
one can ignore tensile force at the elbow, except when a relaxed limb is given a sudden pull. Hence, tensile forces do not occur through 
voluntary movements such as lifting a book. This was demonstrated through saggital sections of the hand gripping a handle where 
tension in the finger flexor tendons creates a palmar flexion moment on the wrist, which is counteracted by the actions of the extensor 
carpi muscles. The overall result is to compress both the radial head and coronoid process against the humerus.

There are different types of elbow prosthesis in use today. Broadly, these can be divided into unconstrained, semi-constrained and 
fully constrained varieties. There are various indications for their use but the most important group is of rheumatoid arthritis. Kincaid., 
et al. [63] does report that total elbow arthrosplasty can improve patients clinically, but long-term survival rates have historically 
lagged behind those reported for hips and knees. Clinical complications associated with implant wear, osteolysis, stem loosening and 
device failure have been implicated as reasons for limited long-term survivorship [64]. There is limited published information on the 

Elbow prosthesis
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Figure 8: Forces on the forearm during an inward rotational effort [50].

biomechanics and method for preclinical evaluation of total elbow prostheses that could provide direct insight into the mechanisms 
of failure. Complex fractures round the elbow have been an important indication for elbow arthroplasty. Sorensen., et al. [65] reported 
that TEA in complex fractures of the distal humerus in elderly patients can result in acceptable short- to medium term outcome [66].

Sahu., et al. [67] investigated the role of anatomically designed radial head implants on elbow biomechanics compared with non-
anatomical implants by determining the radiocapitellar contact pressures. The study showed that geometry was important as the ana-
tomically designed radial head component had a lower and more evenly distributed contact pressures than the non-anatomic implants 
[68].

Amis., et al. [50] describes that failure of the humeral component of the prosthesis has been caused by inward rotational effects 
of the humerus, when pressure on the palm of the hand leads to a large torque on the elbow joint as a result of the lever arm of the 
forearm. It is important to understand that joint mechanics does not have a role if the integrity of the medial collateral ligament is lost 
as the torque will be resisted entirely by the humeral component. When forces act into the hand, we find that small muscles stabilise 
the wrist, so that the elbow is not acted upon by a great extent by the forearm muscles. Figure 8 shows the forces acting on the forearm 
during an inward rotation effort where tension in the medial collateral ligament can be approximately two times the body weight and 
a compression of up to three times the body weight acting on the radial head [50].

We have mentioned earlier the large forces acting on the radial head. The radial head is routinely removed during elbow replace-
ment and analysis of the literature has shown that this is controversial. Amis., et al. [50] describes that this procedure was successful 
for suitable patients not imposing large forces on the arm e.g. arthritic patients. Resection of the radial head leads to transfer of the axial 
load onto the ulna, which then results in significant tension in the medial ligament to overcome a valgus deformity at the elbow. This 
tension can contribute to a significant increase in the ulno-humeral force, which is concentrated over the lateral edge of the coronoid 
process, giving a force of up to 9 times the body weight [54]. Hence, it is important that in a young, active person a radial head replace-
ment is vital for a total elbow replacement. 

Conclusions
This review of the literature available looks primarily at the forces acting on the elbow. The available studies have furthered under-

standing and contributed to the progression of treatment of elbow disorders, of which elbow prosthesis was covered.

The forces, not inconsiderable, across the elbow, as well as the protective functions of muscle and ligament must be considered 
when enabling re-stabilisation of the elbow. This allows better return to a normal biomechanical balance of the elbow.
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