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Abstract

Background: To evaluate the performance of a deep learning-based, automated, multi-class, macular fluid segmentation algorithm 
relative to expert annotations in a heterogeneous population of confirmed wet age-related macular degeneration (wAMD) subjects.

Methods: Twenty-two swept-source optical coherence tomography (SS-OCT) volumes of the macula, comprising 5,632 images from 
20 subjects with wAMD, were manually annotated by two expert graders. Results were compared using cross-validation (CV) to auto-
mated segmentations using a deep learning-based algorithm encoding spatial information about retinal tissue as an additional input 
to the network. The algorithm delineates fluid regions in the OCT data, differentiating between intra- and sub-retinal fluid (IRF, SRF), 
as well as fluid resulting from in serous pigment epithelial detachments (PED). Standard metrics for fluid detection and quantifica-
tion were used to evaluate performance.

Results: The per slice receiver operating characteristic (ROC) area under the curves (AUCs) for each fluid type were 0.900, 0.945 and 
0.939 for IRF, SRF and PED, respectively (95% confidence intervals: 0.886 - 0.912, 0.939 - 0.950 and 0.928 - 0.948). Per volume re-
sults were 0.944 and 0.876 for IRF and PED (95% confidence intervals: 0.714 - 1.000 and 0.574 - 1.000); SRF was present in all cases. 
The correlations (R2) of fluid volume between expert graders and the algorithm were 0.992 for IRF, 0.986 for SRF and 0.820 for PED.

Conclusion: Automated, deep learning-based segmentation can accurately quantify different macular fluid types in SS-OCT data and 
in strong agreement with expert graders.
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Abbreviations

AMD: Age-Related Macular Degeneration; AUC: Area Under the Curve; CCE: Categorical Cross Entropy; CNN: Convolutional Neural Net-
work; CV: Cross-Validation; DME: Diabetic Macular Edema; DSC: Dice Similarity Coefficient; FN: False Negatives; FP: False Positives; ILR: 
Initial Learning Rate; IRF: Intra-Retinal Fluid; OCT: Optical Coherence Tomography; PED: Pigment Epithelial Detachment; ROC: Receiver 
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Operating Characteristic; RPE: Retinal Pigment Epithelium layer; RVO: Retinal Vein Occlusion; SRF: Sub-Retinal Fluid; SD-OCT: Spectral 
Domain OCT; SS-OCT: Swept-Source OCT; TN: True Negatives; TP: True Positives; VA: Visual Acuity; wAMD: wet-AMD

Introduction

Age-related macular degeneration (AMD) is a leading cause of blindness for people over the age of 50, a demographic that is an increas-
ing percentage of the world’s population. Declining fertility rates and increasing longevity are shifting the age distribution in industrial-
ized countries towards older age groups [1]. Approximately 170 million individuals are affected with AMD globally and prevalence of AMD 
is expected to increase to 288 million by the year 2040 [2-5]. The prevalence of this and other ocular diseases places a tremendous burden 
on the healthcare system, and there is a critical need to streamline diagnosis and improve management of these patients.

Wet age-related macular degeneration (wAMD), the advanced, exudative form of AMD, can be managed using therapeutic agents, but 
relies on the assessment of fluid amount and type. Optical coherence tomography (OCT) has revolutionized the management of AMD and 
has been used in investigative trials to associate structure to function in the form of visual acuity (VA) [6]. This ability to measure thick-
ness as a correlate of fluid amount, provides a quantitative value with which to gauge treatment response. There have, however, been 
discrepancies between this value and reported functional outcomes in the literature [7]. In the absence of automation, identifying the 
type and location of fluid is a qualitative clinical approach to determining disease activity and then individualizing treatment [8]. Manu-
ally assessing the OCT data in this subjective way relies on the clinician/grader’s skill and is too time consuming to be feasible in a clinical 
setting.

The field of computer vision offers a more efficient approach to analysis tasks using automated segmentation algorithms to assess 
biomarkers such as retinal thickness. These types of software packages are bundled with the OCT devices and remain instrument-specific. 
While they are able to accurately segment in normal patients, they tend to perform poorly in cases of pathology, particularly so in ad-
vanced disease states, where the need for this evaluation is paramount [9,10]. Furthermore, retinal thickness measurements are only a 
surrogate measure of fluid volume, and explicit, automated fluid detection, quantification and classification are not presently in the arma-
mentarium of analysis tools available clinically.

Deep learning has dramatically changed computer vision making complex tasks, such as automated fluid segmentation, feasible. One 
of the most powerful aspects of deep learning is that the framework automatically learns both the classifier as well as the salient features 
that feed into it. Prior to this, feature extraction typically required meticulous manual design and implementation. We apply this approach 
in this study using convolutional neural networks (CNNs). CNNs are capable of building rich, layered (deep) representations of the data 
which are then classified through additional layers of representation and learned associations. Such significant technical improvements 
have advanced semantic segmentation to levels matching expert human graders, taking seconds to perform tasks that would otherwise 
take hours. This functionality is of significant interest, particularly in ophthalmology where powerful imaging devices are relatively in-
expensive, the device software limited, and image data is key to clinical management. However, ahead of clinical deployment these algo-
rithms require extensive evaluation supportive of final regulatory approval.

In the following we report on the performance of macular fluid segmentation in a heterogeneous, wAMD population. Previously re-
ported studies include Schlgel., et al. who report on fluid segmentation in AMD, diabetic macular edema (DME) and retinal vein occlusion 
(RVO) cases, using two different OCT devices [11]. Mehta., et al. similarly report on an approach for intra-retinal fluid (IRF) segmentation 
that showed an existing deep learning model’s improvement relative to manual graders after transfer learning [12]. More recently, and 
underlining the interest of this particular application, an on-line challenge was organized stemming from a medical imaging conference 
that assimilated and compared a number of different deep learning approaches for segmenting three retinal fluid types in OCT data; intra- 
and sub-retinal fluid (SRF) and pigment epithelial detachment (PED) [13]. This task maps nicely to the work we present in the following 
and is returned to in the discussion section of this paper.
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Methods

This study was Institutional Review Board of Advarra approved and followed the tenets of the Declaration of Helsinki. Written in-
formed consent was obtained from all participants and was in accordance with current ICH/GCP guidelines, section 4.8.10. 

The data was collected using the Topcon Triton SS-OCT device (Tokyo, Japan), using the macular protocol, the scan was centered on 
the fovea and covered a lateral area of 7mm2, with a depth of 2.58mm. This study involved 23 subject eyes from 21 patients. One OCT 
volume was removed due to excessive motion and poor image quality. The resulting 22 volumes were acquired from 20 patients where 
each volume comprised 256 B-scans, with each B-scan comprising 512 A-scans each of 992 pixels. Two patients had both eyes included 
in the study. The key inclusion criteria were: (1) patients had to be ≥ 25 years old; (2) each subject eye diagnosed with wAMD and (3) 
wAMD treatment naïve.

Manual segmentations

Two expert graders, SS and JO separately annotated every fourth B-scan using custom image labeling software, but at different starting 
B-scans so as not to segment the same B-scan. Combined, this created volumes with every 2nd B-scan manually labelled. Adopting a similar 
bootstrapping approach as input to generating additional labeling data from De Fauw., et al. the intermediate B-scans were segmented 
using the same semantic segmentation algorithm reported on for the final result, where the training data was every 2nd B-scan from the 
same volume (Figure 1) [14]. The final correction of the automated labeling was done manually by both readers, ultimately ensuring that 
all 22 volumes (5,632 B-scans) used in the study were fully labeled and could be used as ground truth segmentations. Consensus segmen-
tation results were arrived at in final consultation and adjudication with a senior retina specialist (NC).

Figure 1: Manual labeling of the image data. A bootstrapping approach to generation of labeled data uses a CNN to automatically generate 
labeled images that were then subsequently verified manually. For manually labeled images in the training set (Step 1), a CNN is capable of 
accurately labeling the neighboring images when presented in the test set (Steps 2 and 3). Example input images (A) are used with associ-
ated manual labels (B) to create an initial CNN. Unlabeled images (C) from neighboring B-scans within the same volume are segmented by 

the CNN. The output labels (D) are then manually verified such that they may themselves be used as ground truth.
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Pre-processing

Each input volume’s retinal layers were automatically segmented by OrionTM version 3.0 (Voxeleron, San Francisco, USA), research 
software for OCT analysis. This segmentation information was then encoded into a separate channel that was entered into the supervised 
learning process. Existing literature has used, separately, layer information as features in support of the classification of fluid pockets 
[15], leveraging the fact that retinal fluid exhibits layer dependent properties and thus is used by the model to help determine fluid type; 
IRF typically being higher up in the volume, SRF close to and above the retinal pigment epithelium layer (RPE), PEDs below the RPE, but 
not below the retina itself. In figure 2, the images on the left represent two example B-scans within the volume whose segmentations are 
encoded as image data shown colored on the right. Lastly, each B-scan and the associated label images were sub-sampled to 256-by-256 
pixels in size.

Figure 2: Manual labeling of the image data. A bootstrapping approach to generation of labeled data uses a CNN to automatically generate 
labeled images that were then subsequently verified manually. For manually labeled images in the training set (Step 1), a CNN is capable of 
accurately labeling the neighboring images when presented in the test set (Steps 2 and 3). Example input images (A) are used with associ-
ated manual labels (B) to create an initial CNN. Unlabeled images (C) from neighboring B-scans within the same volume are segmented by 

the CNN. The output labels (D) are then manually verified such that they may themselves be used as ground truth.

Deep learning

Given 22 volumes, the study comprised a total of 5,632 B-scans. For the task of supervised learning, a cross validation (CV) approach 
was adopted for training and testing, where data was very strictly stratified by subject.

This approach splits the data such that any image data from a given subject is not used in training the model and testing the result: i.e. 
of a subject’s 256 or 512 B-scans, all or none are in one set or another.

Training the model involves a further split of the data to create a validation set that tells us when the learning processed has converged. 
In support of more generalizable solutions, we apply the same subject-based stratification of the training/validation split.

Given the limited number of patients, we used 10-fold CV, so on each fold a model was built for all but two or three subject eyes. This 
meant that, for two folds, the test set comprised solely from the patients who had both eyes included in the study. During the learning pro-
cess, the model was assessed based on a validation set that randomly chose 5 subjects from the training data (1,280 B-scans). Therefore, 
on average, training data comprised data from 15 subjects and validation data came from the remaining 5 subjects. This strict stratifica-
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tion to subject eye means that, while the learning uses only training set, we stop this process only when the validation error is clearly 
increasing. This is a standard technique used in supervised learning to prevent over-fitting.

The training data was augmented using random scaling, rotations and shifting such that, for every input B-scan, six additional B-scans 
were generated. We did not augment the validation data.

Implementation

The deep learning architecture used for first the training and then the testing was that of the U-Net, which is a version of the auto-
encoder that uses skip connections to better maintain detail across different scales [16,17]. The implementation uses Tensorflow 2.0 
(Google, Mountain View, USA) and training and testing were performed on a Dell Precision 7920 workstation, running NVIDIA Quadro 
GV100 GPUs.

The network takes as input the OCT image, their encoded segmentations and associated labels (See figure 3). It uses three encod-
ing/decoding levels, as shown in figure 4. Learning is based on minimizing the model’s loss, where the loss function uses categorical 
cross entropy (CCE) and a weighted dice similarity coefficient (DSC). The DSC, for two sets is twice the area of their overlap divided by 
the total number of elements in both sets. CCE is used for multi-class classification where the labels use one-hot encoding and defines a 
measure of dissimilarity between the true value and that which is predicted. Due to the one-hot encoding, we have four classes of inter-
est: background, IRF, SRF and sub-RPE. In our application, non-fluid, or background regions will dominate this cost function that is to 
be minimized, requiring appropriate weighting of the fluid labels. The weighting of the DSC can then be set to diminish influence of the 
background pixels on the overall dice score. Empirically we look for loss values to decrease with increasing epochs in a fairly monotonic 
way: i.e. to ensure that, on the unseen validation data, the network continued learning without over-fitting. This combination of CCE and 
weighted dice loss works well and enables a fairly continuous reduction in validation loss with epochs. There are, however, other hyper-
parameters are at play: drop-out was set to 0.25, batch normalization was applied, and the batch size was 8. The optimizer used was 
Adadelta [18].

Figure 3: Deep learning-based supervised learning. The supervised learning approach using a deep convolutional neural network architec-
ture. The input image data are the B-scans (A) and their associated encoded segmentation results (B). The input labels are one-hot encoded 
versions of each fluid type. This example has one of each: background (C - black), IRF (D - red), SRF (E - blue) and PED (F - green). Typically, 
one or more of the fluid label images will be entirely blank, meaning that fluid type was not present in that B-scan. Portrayed on the right is 
the deep learning architecture that takes in the data and labels and minimizes the loss between the two for the training data. An example 

plot of loss value decreasing over epochs is shown, where the training loss is shown in blue and the validation loss in orange.



Citation: Jonathan D Oakley., et al. “Automated Deep Learning-Based Multi-Class Fluid Segmentation in Swept-Source Optical Coherence 
Tomography Images”. EC Ophthalmology 12.8 (2021): 24-37.

Automated Deep Learning-Based Multi-Class Fluid Segmentation in Swept-Source Optical Coherence Tomography Images

29

The DSC for a single label is defined as:

Where ytrue and ypred are the labels and the current prediction of the labels, respectively. The weighted dice term, DW, is defined as:

Where l denotes the labels - background, PED, SRF and IRF - and wl denotes the weights applied to each of these. The final loss function 
then becomes:

     Loss=CCE+(1-α)DW

Where α controls the influence of the weighted dice term and is set to 0.2. The weights used are w = [0.05, 0.5, 0.225, 0.225], which was 
set a priori based on an estimate of relative proportions in wAMD and the four weights apply to background, IRF, SRF and PED, respective-
ly. In doing this, we are capturing, for example, an estimate that the occurrence of background pixels is ten times that of IRF by setting the 
weight of IRF’s (0.5) contribution to the overall term, DW, as ten times that of the background weight (0.05). It should therefore be noted 
that if the first weight term is too high relative to the others, background will tend to dominate the segmentation. The exact distribution 
of the weights is not critical to the method, but the background’s influence on the final dice score must be suppressed.

The optimizer’s initial learning rate (ILR) was set to 0.5, which changed every nth iteration such that, at epoch i the learning rate used 
is given as:

LRi=ILR*dfloor(i+1)⁄n)

With d set to 0.95, the drop fraction, this resulted in an exponential decay of the initial learning rate that stabilized to a minimum near 
600 epochs. Training stops when the loss score applied to the validation data set stops diminishing for 50 epochs.

The training data comprised 15 subject eyes containing 3,840 B-scans, resulting in 26,880 B-scans after augmentation. With a batch 
size of 8, this means a single epoch takes 3,360 iterations to work through the entire data set.

Figure 4: The deep learning CNN architecture. The CNN architecture used in these analyses. For the two-channel input image (A, B), it out-
puts four images giving the probability score, at each pixel, of belonging to one of the four classes: background (C - black), IRF (D - red), SRF 
(E - blue) and PED (F - green). Dropout was set to 0.25 and the final softmax layer ensures these are normalized and can thus be interpreted 

as probabilities.
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Results

Fluid detection

Fluid detection is reported on a per B-scan and per volume basis using receiver operating characteristic (ROC) curves, with the sum-
mary statistic being the area under the curve (AUC). For a given B-scan, the network outputs a probability score for each class, facilitating 
the plot of ROCs and the measured performance. In evaluating on a per volume basis, we were only able to report IRF and PED perfor-
mance as all 22 wAMD subject eyes had at least some SRF as reported by the manual labelling, meaning no negative examples were avail-
able. These are given in figure 5, with precision and recall values in table 1.

Figure 5: Detection performance of each fluid type. Per B-scan AUCs were 0.900, 0.945 and 0.939 for IRF, SRF and PED, respectively (95% 
confidence intervals: 0.886 - 0.912, 0.939 - 0.950, and 0.928 - 0.948). Per volume results were 0.944 and 0.876 for IRF and PED (95% confi-

dence intervals: 0.714 - 1.000 and 0.574 - 1.000).

Per B-scan Per volume
IRF SRF PED IRF SRF PED

Precision 0.503 0.749 0.729 1 1 0.978
Recall 0.769 0.827 0.842 0.823 0.921 0.898

Table 1: Precision and recall proportions for each fluid group by B-scan and volume. Precision measures the proportion of positively labeled 
cases that were correct, and recall measures the proportion of positive cases that were identified correctly. Precision example: when the 

algorithm says a volume contains PED, it is correct 97.8% of the time. Recall example: our algorithm correctly identifies 92.1% of volumes 
with SRF.

Precision is defined as the number of true positives (TP) divided by the total number of reported positive cases, true and false (FP): 
TP/(FP+TP). Recall is TP divided by the total number of actual positive cases: TP/(TP+FN). The values are calculated at the Youden index 
of the ROC curve.
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Fluid quantification

Given manual segmentations of all B-scans in all volumes, we report the ability to quantify fluid by directly correlating the total volume 
of fluid for each of the 22 subject eyes that was manually delineated with that automatically determined. The coefficient of determination 
(R2) is used as a summary statistic for correlation, and both the correlation and Bland-Altman plots are shown in figure 6. Furthermore, 
the area of overlap, as quantified by the DSC, between graders and the algorithm was examined (Figure 7). Finally, example result images 
are given in figure 8 and 9.

Figure 6: Manual versus automated fluid quantification. The above shows the manual versus automated reported total areas for each fluid 
type across all 22 volumes (left) and the Bland-Altman plots on the right. The correlation scores are 0.992, 0.986 and 0.820 for IRF, SRF and 

PED, respectively (top to bottom). For the Bland-Altman plots, the manual values are denoted with ‘_M’ and the automate values with ‘_A’. 
Narrow limits of agreement are shown for IRF and SRF, but are larger for PED, as we address in the discussion.
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Figure 7: Distribution of dice scores for each fluid type. Dice coefficients for all cases where a given fluid type was manually labeled as  
being above 1nL.

Figure 8: Example correct segmentations. Input B-scans (A, B, C, D), manual segmentations (E, F, G, H), and the automated segmentations 
(I, J, K, L). IRF is labeled red, SRF in blue and green constitutes PED.
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Discussion

We have shown that the performance of automated segmentation of three fluid types in SS-OCT is in very strong agreement with that 
done manually by expert graders. To the best of our knowledge, this is the first study to report on such a technique using SS-OCT. Previous 
work using deep learning has, for example, reported on the segmentation of the retina and choroid and also disease detection in SS-OCT, 
but not retinal fluid segmentation [19,20]. As an imaging modality, SS-OCT is becoming clinically more relevant than the more convention-
al and established spectral domain OCT (SD-OCT) due to a number of distinct advantages. A first is the speed of acquisition that is typi-
cally four times as fast as SD-OCT devices - the Triton device used here acquires 100,000 A-scans/sec - which allows for more data to be 
captured over wider fields of view in a shorter amount of time. Prototype devices now operate at up to 400,000 A-scans/sec [21]. Speed of 
acquisition minimizes patient chin rest time and reduces the amount of motion in the scan. A second advantage is the longer wavelength 
that allows light to penetrate deeper into the retina, supportive of better visualization of the choroid and structure below the RPE. And 
while SS-OCT has slightly reduced axial resolution relative to similar SD-OCT devices, the overall signal to noise ratio tends to be higher.

Deep learning, however, is the enabling technology of this and other similar studies. In comparison, previous solutions are quite varied. 
One such example is from Bogunović., et al. who assimilate a number of computer vision-based techniques to achieve fluid segmentation 

Figure 9: Example incorrect segmentations. The above shows example input B-scans exhibiting fibrovascular PEDs (A, B, C, D). The manual 
labelings below (E, F, G, H) decided the only (E) and (F) contained fluid and (G) and (H) were mostly fibrous tissue. The automated segmen-

tations show that cases (I), (K) and (L) labeled as PEDs, but not (F). IRF is labeled red, SRF in blue and green constitutes PED.
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[15]. Their approach begins with layer segmentation to constrain the solution and to add positional information that, along with textural 
features, is used to assign probabilities of voxels, as “fluid” or “no fluid”. This assignment uses an artificial neural network (ANN) where 
supervised learning is based on a leave-one out (LOO) CV approach. This soft segmentation is hardened in a final step that uses fully 3D 
geodesic graph cuts to isolate the fluid pockets producing binary labels.

Similar methods exist where layer segmentation is initially used to constrain the problem and then a number of techniques such as 
region growing, thresholding, boundary tracing or clustering are used to arrive at the final result [22-25].

An important early deep learning reference is the work of Roy., et al. who compare a variety of U-Net implementations on 110 labeled 
images from 10 subjects [26]. Other previously reported studies include Schlgel., et al. who report on fluid segmentation in AMD, diabetic 
macular edema (DME) and retinal vein occlusion (RVO) cases [11]. This was performed using two different OCT devices and has subse-
quently become an important reference. For comparison, and considering the AMD cases only, two fluid types (IRF and SRF) were seg-
mented using a deep CNN and results reported based on both 4- and 10-fold CV. The number of volumes were 70 and 257, respectively for 
the two different instruments. Performance is impressive, with volume-based detection of fluid having AUCs of 0.95 (IRF) and 0.98 (SRF) 
on the Cirrus device (Carl Zeiss Meditec, Dublin, USA); and 0.93 (IRF) and 0.90 (SRF) with the Spectralis data (Heidelberg Engineering, 
Heidelberg, Germany). Mehta., et al. similarly report on a deep learning approach for IRF segmentation [12]. Their reporting mechanism 
was to show that the DSC between the automated algorithm and the manual graders improved after transfer learning. The model used, 
from Lee at al. was created based on Spectralis data and then further trained for Cirrus data using 400 OCT B-scans (2D images) from 
58 patients [27]. It was deployed on a test set comprising of 70 scans from 70 different patients. The architecture was necessarily that 
developed by the original authors as transfer learning was applied.

The work of Schlgel is of particular importance given its recent deployment in a retrospective clinical analysis that was able to cor-
relate fluid amounts to clinical outcomes [28]. A key difference in our study, however, is the additional segmentation of PED fluid within 
the same network. This becomes feasible with this data set, because of the method of spatial injection that uses the layer segmentation 
software (OrionTM). This we see is also the case in the analysis of three fluid labels in the RETOUCH challenge where, in the best perform-
ing instances, the approach is to first segment the data, second train a CNN with image data and segmentation as input, and third refine 
the final result using an additional classifier [13,29]. We see a benefit of having the segmentation element using non-trained data and all 
of the fluid segmentation within a single CNN, as is reported here. But consensus exists that encoding spatial information about the retinal 
tissue as an additional channel to the input image data is shown to improve the overall performance of the segmentation algorithm. While 
fluid segmentation alone can be accomplished using just the input image data, the additional classification of each fluid type benefits 
significantly from this technique.

This pilot study is not without its limitations. Firstly, we have a restricted number of subjects, meaning that, in CV analysis, there are 
only limited examples of a given fluid type in the training data when testing against a given subject. This is further confounded by our ap-
proach of splitting subject IDs across training, validating, and testing sets to ensure the network is learning but in a way that will general-
ize to unseen cases by not overfitting the training data. The populations are similar, however, to Bogunović., et al. but as they have three 
volumes per subject, their LOO CV analysis might be unduly influenced by having subject data in both the train and test sets [15]. More 
recent work has involved extremely large data sets - 3000 subject eyes - to report on anatomical features that include IRF, SRF, PEDs and 
also hyperreflective foci [30]. While impressive, it is important to note that the algorithm used has not to date been validated for this task, 
only as a pre-processing step to an inference engine for triaging patients based on severity of disease [14]. 

While the lack of data may be a limitation of the analysis, it is not necessarily a limitation of the method. The deep learning paradigm 
thrives on data; the more data we have, the larger the learning space covered, meaning it is more likely we have relevant examples to 
unseen data and the more natural the regularization of the resulting network. In this respect, we again look to the work of Schlegl., et al. 
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where the subject data is far larger [11]. In considering just their population of wet-AMD patients, however, we see similar ratios of train/
test splits, but they do go on to apply this at scale. We consider this reference as a current standard, and as such have looked to contrast 
our results directly.

Whenever supervised learning is applied, one must ensure that the ground-truth is correct. This can be challenging as the manual 
quantification of fluid presence, amount and type is difficult, extremely time consuming and highly variable across graders. As illustrated 
in figure 9, we found a consistent definition of sub-retinal pigment epithelial (RPE) fluid in serous PED difficult, and this is a limitation as 
this can additionally lead to questioning the ground truth data used in 1) the training of the models using supervised learning and 2) the 
validation based again on manual labeling. Repeatability between manual graders has been previously reported as low, and in the con-
text of segmentation tasks has been highlighted by Bogunović., et al. where their inter-observer analysis showed poor overlap between 
graders [15,31]. We have attempted to minimize the variability across graders by not reading blinded to each other and instead labeling 
intermittent slices of the same volume. This allowed each grader to read the images in the context of the other’s labelling. PED cases, how-
ever, can manifest as either serous, fibrovascular or drusenoid; or indeed a mix of these. Our target labeling was serous, which is sharply 
demarcated given their large, dark (hyporeflective), fluid regions and dome-like shape. Fibrovascular PEDs on the other hand contain 
tissue, which refracts the OCT signal and shows, therefore, as lighter than fluid. Drusenoid PED are smaller, in general, creating an undu-
lating RPE surface, and contain hyaline protein deposits, denser tissue that results again in a brighter appearance. Consistent labeling of 
our target detachment type, serous, was important, but it is still challenging to find a consistent manual “threshold” when some fluid only 
cases show clear signs of fibrovascular tissue; or vice versa. This is particularly evident in figure 9 where fluid has been manually labeled 
in (E) and (F), but not in (G) and (H). Consequently, the algorithm too has difficulty in finding this difference. Ideally, one might iterate to 
find a consensus labeling in conjunction with the algorithm results, but that is also time consuming and while such a consensus would 
ultimately improve the results it could also inappropriately bias them. With enough data, however, the differentiation of PED subtypes is 
undoubtedly possible as is indicated in previous work [14].

Conclusion

In conclusion, our study demonstrates that automated fluid detection and segmentation correlates highly with manual grading per-
formed by experts. Combined segmentations of IRF and SRF with sub-RPE fluid in serous PEDs, offer a near complete automated solution 
for retinal fluid in wAMD. An automated approach to multi-layer fluid segmentation offers an advantage to physicians managing patient 
care amidst a busy clinical setting, particularly with the growing disease burden of wAMD. Furthermore, applying this deep-learning 
approach in clinical trials for therapeutic drug development could accelerate trial end points and the achievement of novel therapeutics 
within commercial timelines.
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