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Micronutrients are vitamins and minerals which are required in small amounts but are necessary to ensure healthy physical and 
mental development. Vitamins are necessary for energy production, immune function, blood clotting and other functions. Meanwhile, 
minerals play an important role in growth, bone health, transmitting nerve pulses, maintain normal heart beats, insure immune system 
health, and several other processes. Essential micronutrients include iron, zinc, calcium, selenium, iodine, magnesium, and vitamins [1].

Micronutrient deficiencies form an important global health issue, by causing severe damage to human physically and intellectually 
in addition to increased risk of many serious diseases [2]. Unfortunately, the health impacts of micronutrient deficiency are not always 
acutely visible; it is therefore sometimes termed ‘hidden hunger’ [3]. According to The World Health Organization (WHO) more than two 
billion people (i.e. 1 in 3) suffer from micronutrient deficiency globally [4].

Biofortification is a type of micronutrients intervention that has potential to reach the rural poor effectively, this group of population 
are often at high risk of micronutrients deficiency. Biofortification is proved to play an important role in combating micronutrients defi-
ciency, specially vitamins, by providing an economic and effective delivery of nutrients to population in need [2]. We should differentiate 
between food fortification which is simply exogenous adding of vitamins and minerals to foods and biofortification that means to enrich 
food plants including seeds, tubers, and leafy vegetables with vitamins through conventional breeding, biotechnology and/or agronomic 
approaches [5]. Many researches have been done in this field, leading to many successful examples. A number of biofortified crops have 
already been released worldwide [6,7] (Table 1).

Table 1: Biofortified edible plants released worldwide.
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In this article we will focus on the progress had done so far in the manipulation of the vitamin metabolism for developing vitamin-
biofortified crops. Currently there are three strategies used to develop transgenic vitamin biofortified crops: 

Over expressing the genes involved in biosynthesis

This strategy is used to biofortified food with vitamins A, B and C. Vitamin A exists in several forms known as retinoids. Human can 
synthesize retinal from the abundant provitamin A carotenoids present in fruits and vegetable such as orange, spinach, broccoli and sweet 
potato [8]. Plants produce four types of provitamin A carotenoids from phytoene [9]. The most commonly used gene for carotenoids 
biofortification is the genes encoding phytoene synthase alone or in combination with gene encoding phytoene desaturase. Phytoene 
synthase was applied to crops including canola, soybean, flax and potato [10,11]. Folates (vitamin B9) include tetrahydrofolate and its 
derivatives. Folates are generally abundant in beet, legumes and dark-green leafy vegetables such as spinach. Production of folate-fortified 
crops depends on over expression of genes for dihydrofolate synthetase or GTP cyclohydrolase I, both enzymes are proposed to control a 
rate-determining step in folate biosynthesis in plant [12]. 

Silencing the genes involved in recycling

This strategy has been used to develop vitamin C (ascorbate) - biofortified crops. It has been carried out by knocking down the genes 
responsible for ascorbate recycling in the plant cell, such as monodehydroascorbate reductase (MDHAR) and dehydroascorbate reductase 
(DHAR). However, this strategy leads to less increase in vitamin C content in tomato, potato and maize compared to transgenic plants 
developed by overexpression of the genes involved in biosynthesis strategy [13,14]. 

Increasing the activity of the enzymes in different steps in the biosynthetic pathway. 

This method has been successfully used in case of vitamin E. Vitamin E contains phenolic groups that easily oxidized to produce 
effective antioxidant derivatives that positively contribute to human health [15]. Most approaches to stimulate vitamin E levels in crops 
depend on increasing the activity of enzymes in each step in the biosynthetic pathway such as p- hydroxyphenylpyruvate dioxygenase, 
2-methyl-6-phytyl-benzoquinol methyltransferase and tocopherol cyclase [16,17]. 

Generally, two criteria should be considered when selecting appropriate food crops for vitamin biofortification strategies: (1) the crop 
has to be widely used and of economic importance; (2) vitamin accumulation in the consumed part of the crop plant as well as its bioavail-
ability to the consumers should not be restricted by any physiological or developmental limitations. 

Biofortification based on crop breeding, targeted genetic manipulation, and/or the application of mineral fertilizers is a promising, ef-
ficient and cost-effective approach to improve vitamin status in populations suffering from nutrient deficiencies all over the world. While 
a lot of expectation has been laid on transgenic - based biofortification, still the number of the released biofortified cultivars is higher for 
breeding - based approach. 

Manipulation of micronutrients metabolism in plant is still limited due to incomplete understanding of the regulation of the endog-
enous pathways, further studies are still required in this regard.
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