

Inducing Dopamine Homeostasis to Combat Brain-Gut Functional Impairment as a Function of Behavioral and Neurogenetic Correlates of Reward Deficiency Syndrome (RDS)

Kenenth Blum¹⁻⁷*, Kai-Uwe-Lewandrowski^{1,8}, Morgan P Lorio⁹, Alireza Sharafshah¹⁰, Kavya Mohankumar⁴, Nicole Jafari¹¹, Foojan Zeine¹², John Giordano⁴, Alvaro Dowling^{13,14}, Rafaela Dowling¹⁵, Panayotis K Thanos¹⁶, Igor Elman¹⁷, Rossano Kepler Alvim Fiorelli⁵, Sergio Schmidt⁵, Debasis Bagchi¹⁸, Marco Lindenau⁴ and Rajendra D Badgaiyan¹⁹

*Corresponding Author: Kenenth Blum, Division Personalized Pain Research and Education, Center for Advanced Spine Care of Southern Arizona, Tucson, AZ, USA.

Received: September 18, 2025; Published: October 15, 2025

¹Division Personalized Pain Research and Education, Center for Advanced Spine Care of Southern Arizona, Tucson, AZ, USA

²Department of Psychiatry, Wright State University Boonshoft School of Medicine and Dayton VA Medical Center, Dayton, OH, USA

³Department of Psychiatry, Human Integrated Services Unit, University of Vermont Center for Clinical and Translational Science, College of Medicine, Burlington, VT, USA

⁴The Kenneth Blum Behavioral and Neurogenetic Institute, LLC., Austin, TX, USA

⁵Post-Graduate Program in Neurology, Federal University of the State of Rio de Janeiro, Rio de Janeiro, Brazil

⁶Department of Molecular Biology, Adelson School of Medicine, Ariel University, Ariel, Israel

 $^{^7}$ Eotvos Lorand University, Institute of Psychology, Department of Clinical Psychology and Addiction, Budapest, Hungary

⁸Department of Spine Surgery, University of Arizonia, School of Medicine, Tucson, AZ, USA

⁹Department of Osteopathic Principles and Practice, Orlando College of Osteopathic Medicine, Orlando, FL, USA

¹⁰ Cellular and Molecular Research Center, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran

¹¹Department of Applied Clinical Psychology, The Chicago School of Professional Psychology, Los Angeles, CA, USA

¹²Department of Health Science, California State University at Long Beach, Long Beach, CA, USA

 $^{^{13}}Orthopaedic\ Spine\ Surgeon,\ Director\ of\ Endoscopic\ Spine\ Clinic,\ Santiago,\ Chile$

¹⁴Department of Orthopaedic Surgery, USP, Ribeirão Preto, Brazil

¹⁵Catacell, Santiago de Chile, Chile

¹⁶Behavioral Neuropharmacology and Neuroimaging Laboratory on Addictions, Clinical Research Institute on Addictions, Department of Pharmacology and Toxicology, Jacobs School of Medicine and Biosciences, State University of New York at Buffalo, Buffalo, NY, USA

¹⁷Department of Psychiatry, Harvard University School of Medicine, Cambridge, MA, USA

¹⁸Department of Pharmaceutical Sciences, Texas Southern University College of Pharmacy, Houston, TX, USA

¹⁹Department of Psychiatry, Mt. Sinai University School of Medicine, New York City, NY, USA

Abstract

Reward Deficiency Syndrome (RDS) encompasses a spectrum of addictive and compulsive behaviors, including substance use disorders, obesity, and behavioral addictions, rooted in dysregulated dopaminergic and endorphinergic pathways. Genetic, epigenetic, and environmental factors interact to compromise the Brain Reward Cascade (BRC), resulting in hypodopaminergia and impaired endogenous opioid signaling. Polymorphisms in key genes, such as DRD2, PENK, and OPRM1, along with epigenetic modifications, can reduce dopamine or endorphin function, increasing vulnerability to compulsive behaviors and addiction. Animal and human studies demonstrate overlapping neurobiological mechanisms across substance and non-substance addictions, implicating the mesolimbic system, prefrontal cortex, and hypothalamic-gut axis. Obesity, as a subtype of RDS, illustrates the interplay of homeostatic and hedonic reinforcement, with metabolic hormones like leptin and ghrelin modulating ventral tegmental area (VTA) dopamine activity. Food and drug addictions share common neurogenetic pathways, and gene-environment interactions influence the propensity for addictive behaviors, including post-bariatric surgery "addiction transfer". Emerging strategies focus on pro-dopamine regulation, aiming to restore dopaminergic homeostasis through nutraceuticals, lifestyle interventions, and personalized medicine. Genetic Addiction Risk Severity (GARS) testing enables early identification of at-risk individuals, informing targeted prevention and treatment approaches. Policy recommendations emphasize safe, evidence-based integration of pro-dopamine therapies with behavioral and pharmacologic interventions, ensuring quality, transparency, and equitable access. Collectively, these findings underscore the importance of understanding the neurogenetic underpinnings of RDS to develop individualized, mechanistically informed interventions for addiction, obesity, and related disorders.

Keywords: Dopamine; Brain-Gut Functional Impairment; Reward Deficiency Syndrome (RDS)

Abbreviations

2-AG: 2-Arachidonoylglycerol; 5-HT2A: 5-Hydroxytryptamine (Serotonin) 2A Receptor; Ach: Acetylcholine; ADHD: Attention-Deficit/ Hyperactivity Disorder; AgRP: Agouti-Related Peptide; ARC: Arcuate Nucleus (of the Hypothalamus); ASAM: American Society of Addiction Medicine; BMI: Body Mass Index; BRC: Brain Reward Cascade; CB1: Cannabinoid Receptor Type 1; DA: Dopamine; DRD2: Dopamine D2 Receptor (Gene); DRN: Dorsal Raphe Nucleus; DDS: Dopamine Deficiency Syndrome; fMRI: Functional Magnetic Resonance Imaging; GABA: Gamma-Aminobutyric Acid; GABAA/GABAB: GABA Type A/Type B Receptors; GARS: Genetic Addiction Risk Severity (Test); GLU: Glutamate; GLU M3: Muscarinic M3 (Glutamatergic Modulation Noted in Text); GMP: Good Manufacturing Practices; ISO: International Organization for Standardization; KB220: Pro-Dopamine Regulator Formulation (Prototype Family); LHA: Lateral Hypothalamic Area; MAT: Medication-Assisted Treatment; MDD: Major Depressive Disorder; MME: Membrane Metallo-Endopeptidase (Gene); miRNA: Micro-Ribonucleic Acid; NMDA: N-Methyl-D-Aspartate (Glutamate) Receptor; NAc: Nucleus Accumbens; NSF: National Science Foundation; OPRM1: Opioid Receptor Mu 1 (Gene); OPDS: Opioid Peptide Deficiency Syndrome; OUD: Opioid Use Disorder; PCA: p-Chlorophenylalanine (Tryptophan Hydroxylase Inhibitor); PENK: Proenkephalin (Gene); PET: Positron Emission Tomography; PFC: Prefrontal Cortex; POMC: Pro-opiomelanocortin; PTSD: Post-Traumatic Stress Disorder; PVN: Paraventricular Nucleus (of the Hypothalamus); RDS: Reward Deficiency Syndrome; rsFC: Resting-State Functional Connectivity; TIDA: Tuberoinfundibular Dopaminergic (Neurons/Pathway); TIQ(s): Tetrahydroisoquinoline(s); USP: United States Pharmacopeia; VMH: Ventromedial Hypothalamus; VMN: Ventromedial Nucleus (of the Hypothalamus); VTA: Ventral Tegmental Area; CMMI: Center for Medicare and Medicaid Innovation; SNP: Single-Nucleotide

Citation: Kenenth Blum., *et al.* "Inducing Dopamine Homeostasis to Combat Brain-Gut Functional Impairment as a Function of Behavioral and Neurogenetic Correlates of Reward Deficiency Syndrome (RDS)". *EC Neurology* 17.11 (2025): 01-25.

Introduction

Individuals with mood disorders or with addiction, impulsivity, obsessive-compulsive behavior, and some personality disorders often exhibit a shared dysfunction in reward processing, where endogenous endorphin processing and the response to exogenous dopaminergic stimulants are compromised. Reward Deficiency Syndrome (RDS) is a polygenic trait implicating insufficient crosstalk between the known reward pathway, neuroendocrine systems, and motivational systems [1]. Collectively, these conditions engage underlying reward deficiency mechanisms across multiple brain centers. Because of the broad, overlapping behavioral manifestations sharing a common root of hypodopaminergia, the basic endophenotype recognized as RDS has been likened to a "behavioral octopus" [2,3] (See figure 1).

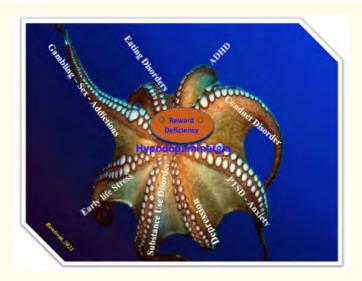


Figure 1: RDS as a behavioral Octopus [2].

In previous publications [2], our group assessed well-characterized animal models for construct validity and their suitability as potential models for RDS. Animal models spanning substance use disorder, major depressive disorder (MDD), early-life stress, immune dysregulation, attention-deficit/hyperactivity disorder (ADHD), post-traumatic stress disorder (PTSD), compulsive gambling, and compulsive eating are reviewed. Across these paradigms, convergent evidence points to recruitment of underlying reward deficiency mechanisms in multiple brain centers. Reflecting their wide, overlapping behavioral phenotypes rooted in hypodopaminergia, RDS has been likened to a "behavioral octopus".

There are multiple neurotransmitters involved in the processing of reward and punishment, with at least six major transmitter pathways and numerous second messengers. These neurotransmitter networks function within the mesolimbic circuit and prefrontal cortex (PFC), where they regulate "wanting" and culminate in neuronal dopamine release [4] (See figure 2). This figure summarizes the established Brain Reward Cascade (BRC) and the addiction-relevant correlates and neurotransmitters.

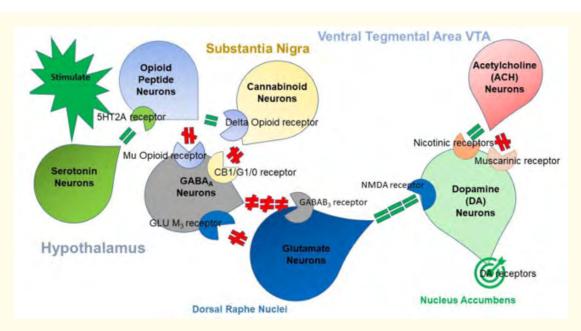
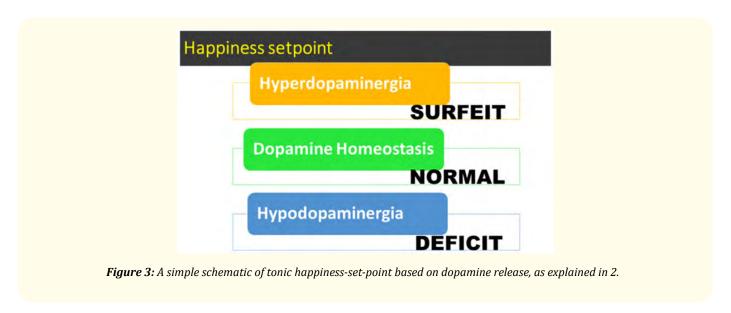



Figure 2: The brain reward cascade.

The figure illustrates interactions among ≥7 major neurotransmitter pathways comprising the BRC. In the hypothalamus, environmental inputs trigger serotonin release which, via 5-HT2A receptors (green "="), activates opioid peptide neurons to release peptides. These opioids exert two effects, likely via distinct receptors: (i) inhibition (red "#") through μ-opioid receptors (e.g., enkephalin) projecting to GABAA neurons in the Substantia Nigra; (ii) stimulation (green "=") of cannabinoid neurons (anandamide, 2-arachidonoylglycerol) via β-endorphin-linked δ-receptors, which then inhibit GABAA neurons in the Substantia Nigra. Cannabinoids, primarily 2-AG, can also indirectly disinhibit (red "#") GABAA neurons via Gi/o-coupled CB1 receptors in the Substantia Nigra. In the dorsal raphe nuclei (DRN), glutamatergic neurons can indirectly disinhibit GABAA neurons in the Substantia Nigra via GLU M3 receptors (red "#"). When engaged, GABAA neurons strongly (red "#") inhibit VTA glutamatergic drive, in part via GABAB neurons. At the nucleus accumbens (NAc), ACh can act on muscarinic (red "#") and nicotinic (green "=") receptors. Finally, VTA glutamatergic inputs engage NMDA receptors (green "=") on dopamine neurons, promoting dopamine release in the NAc (bullseye), which corresponds to euphoria or "wanting". Low dopamine release (e.g. endorphin deficiency) is associated with dysphoria, whereas well-being depends on a homeostatic tonic dopamine set point (See figure 2).

The cascading interaction of these neurotransmitters and second messengers' results in the correct release of dopamine within the NAc and across many brain regions. These regions are involved in motivation, cognition (memory), pleasure, stress reduction, drug reinstatement, decision-making, recall, wellbeing, and especially cravings [5]. The result is to provide *homo sapiens* with a usual happiness set-point (Figure 3) identified as resting-state functional connectivity (rsFC).

Over the last six decades (since 1968), understanding of how psychoactive drugs influence behavior has advanced markedly, emphasizing complex actions within neuronal pathways-especially the mesolimbic system and the prefrontal-cingulate cortex. Earlier theories in opioid use have been re-evaluated [6]. Recovery frameworks (e.g. the 12-step program and fellowship) and ASAM's updated definition of "addiction" have strongly influenced younger cohorts. Broad acceptance that addiction is a brain disorder is reshaping addiction medicine [7].

Early work on serotonin and brain reward circuitry showed that depleting brain serotonin amplifies stress-like responses in rodents trained for electrical self-stimulation. They used p-chlorophenyl alanine (PCA), a tryptophan hydroxylase inhibitor that selectively depletes brain serotonin content [8]. These findings suggested that PCA is anxiogenic and that serotonin exerts anti-anxiety effects. Building on Myers and Cicero [5] and recognizing that pineal serotonin levels are low during the dark phase, Geller's group tested whether darkness enhances ethanol drinking in rodents. The first experiment showed that rats placed in a dark closet drank more alcohol than those housed in the light [9,10]. They hypothesized that elevated pineal melatonin increased drinking. Subsequently, injections of melatonin in rats exposed under "normal" (nine hours of darkness during a 24-h day) photoperiods revealed this to be accurate since they also displayed augmented ethanol intake; consequently, several experiments validated these results [9,11,12]. Convergent experiments showed that nighttime adenylate cyclase-driven stimulation of N-acetyltransferase (and conversion to melatonin) increases ~three-fold, further supporting this model [13-15]. Another line of work proposed that dopamine condensation products (isoquinolines) contribute to ethanol consumption.

In 1970, Davis and Walsh [16] proposed that a product of alcohol, tetrahydropapaverline, a benzyltetrahydroisoquinoline alkaloid derivative of the biogenic amine, dopamine, and acetaldehyde, condenses and can induce ethanol intake in rodents. Contemporaneous studies implicated biogenic amines (e.g., norepinephrine) and later indoleamine (serotonin) aldehyde condensation products-salsolinol and carbochol, respectively-in alcoholism [17,18]. Together, these data suggested shared neurochemical mechanisms for alcohol and opiate addiction. Controversy spurred additional work showing that ethanol intake elevates brain salsolinol [19,20]; salsolinol increases ethanol intake [18]; salsolinol exhibits opiate-like agonism [19-21]; and salsolinol-induced withdrawal tremors are blocked by narcotic antagonists [22-24].

Following these findings, the 1970s heralded an era of "Sex, Drugs, and Rock 'n' Roll" [25]. In the 1980s, Gold's group proposed the dopamine depletion hypothesis for recreational cocaine use and suggested bromocriptine to reduce cravings [26]. By the 1990s, neuroimaging began illuminating neurogenetic and neurobiological mechanisms of substance abuse [27,28]. While we contend that RDS is a nosology encompassing all addictive behaviors, specific drug and non-drug behaviors still require targeted consideration.

Understanding endorphin deficiency syndrome and opioid deficiency syndrome

Induction of Opioid Peptide Deficiency Syndrome may reflect genetic and epigenetic insults to reward circuitry specific to opioid peptides (endorphins, enkephalins, dynorphins). Genetic contributors include polymorphisms in Membrane metal-endopeptidase (MME), a carboxypeptidase that inactivates endogenous opioid peptides. Comings., *et al.* [29] identified a dinucleotide polymorphism in the 5' region of the MME gene that provides a high activity of this enzyme and subsequently reduced endogenous opioid peptides by substantial inactivation. The resulting state-general "hypo-opioidergia," specific "hypo-endorphinergia" at delta/mu receptors, and "hypo-dynorphinergia" at kappa receptors (not shown in 4)-impairs opioid signaling. Additionally, individuals may carry the rs260997 C allele of Proenkephalin (PENK), which is associated with significantly reduced enkephalin synthesis across the BRC [30]. Moreover, Niikura., *et al.* [31] reported that there are epigenetic insults that reduce mRNA expression involving downregulation of mu receptor numbers or availability by chronic use/misuse of opiate analgesics like heroin or potent synthetic opioids like methadone, buprenorphine. Consistent with this, Nylander, *et al.* [32] observed reduced leu-enkephalin in the VTA of Sprague-Dawley rats after chronic morphine exposure.

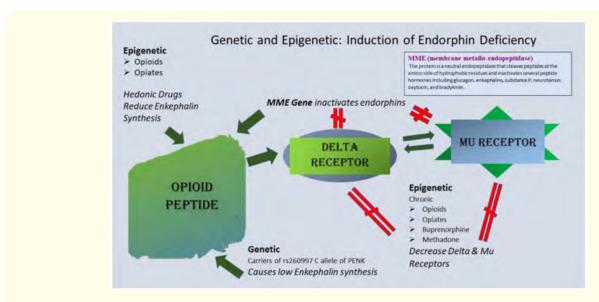


Figure 4: Schematic of genetic and epigenetic induction of opioid peptide deficiency syndrome.

Opioid Peptide Deficiency Syndrome (OPDS) may arise from genetic and epigenetic insults affecting the opioid-peptide components of the brain reward circuitry (endorphins, enkephalins, dynorphins). Genetic deficits may include polymorphisms in membrane metallo-endopeptidase (MME), a carboxypeptidase that inactivates endogenous opioid peptides. Comings et al. reported a 5'-region dinucleotide polymorphism in MME associated with increased enzymatic activity and greater inactivation of endogenous opioid peptides. Consequently, a general "hypoopioidergia," or a more specific "hypoendorphinergia" at delta or mu receptors and a "hypodynophinergia" at kappa receptors (not shown in figure 3), may result [red hatch sign]. Also, individuals carrying the Proenkephalin (PENK) rs260997 C

allele at birth may show significantly reduced enkephalin synthesis across the BRC [red hatch sign]. Moreover, Niikura., et al. described epigenetic insults-induced by chronic use/misuse of opioids (e.g. heroin, methadone, buprenorphine)-that reduce mRNA expression and downregulate mu-opioid receptor number/availability [red hatch sign]. Furthermore, Nylander et al. observed decreased leu-enkephalin in the VTA of Sprague Dawley rats after chronic morphine exposure [red hatch sign]. Dark green arrows indicate normal flow.

A range of human activities trigger the production of endorphins or enkephalins. Laughter increases pain tolerance and stimulates endorphin release [33], and vigorous aerobic exercise elevates β -endorphin [34,35]. Endorphins are released by pleasurable behaviors such as eating chocolate (contains TIQs), sex, orgasm, eating, yoga, meditation, and listening to music [36,37].

Enkephalins are abundant in the brain, especially in the hippocampus and prefrontal cortex. Stressors modulate these neuropeptides and signaling at metabotropic enkephalin G-protein-coupled receptors (delta-opioid and mu receptors) [38,39]. Other endogenous opioid ligands such as dynorphins bind to kappa receptors, while endorphins primarily bind to mu receptors [40,41].

In the mesolimbic reward pathway, enkephalins binding to μ -receptors inhibit GABA release, thereby increasing dopamine production and release [42]. Endorphin or opioid deficiency weakens inhibitory control over GABA and, via raphe interactions at the substantia nigra-VTA junction, reduces dopamine release at the NAc. This resulting hypodopaminergia increases addiction vulnerability.

It is well known now that the interaction of at least seven neurotransmitter systems (serotonin, opioid peptides, cannabinoids, GABA, Glutamate, acetylcholine, and dopamine) and associated second messengers play a role in reward processing in the brain of *Homo sapiens*. The Brain Reward Cascade (BRC) that culminates in dopamine release (illustrated in figure 1) is the basis of pleasures from everyday natural rewards. Balanced neurotransmission supports well-being and stress reduction, whereas BRC impairment can produce hypodopaminergia. For example, if an individual carries a polymorphism in the OPM1 (rs1799971-A118G) that reduces mu-opioid receptor function, this reduction can drive over-expression of GABAergic signaling and significantly reduce the net preferential-neuronal release of Dopamine at the NAc. Also, there could be epigenetically induced methylation that can cause a reduced mRNA expression for at least two generations [43]. Having an antecedent opioid/endorphin deficiency may predispose an individual to uncontrolled dependence once exposed to a powerful opioid like Oxycontin. This risk underscores the challenges the entire scientific community has in the face of the worst opioid epidemic ever seen in America [44].

Understanding obesity as a hypodopaminergia

Another example of specific RDS behavior is obesity. Affecting more than 300 million people worldwide, obesity remains difficult to manage with popular weight-loss tactics. Managing the obesity problem seems within reach, as our understanding of genomic influences on drug/nutrient responses develops. Strategies indicated by this understanding of nutriepigenomics and neurogenetics in the treatment and prevention of metabolic syndrome and obesity include modulating mRNA expression by DNA methylation and inhibiting histone deacetylation. Based on an individual's genetic makeup, deficient metabolic pathways can be targeted epigenetically, for example, with dietary supplementation containing phytochemicals, vitamins, and functional amino acids. Also, the chromatin structure of imprinted genes that control nutrients during fetal development may be modified. Pathways affecting dopamine signaling, molecular transport and nervous system development are implicated in these strategies. Obesity is a subtype of Reward Deficiency Syndrome (RDS) and these new strategies in the treatment and prevention of obesity aim to improve dopamine function. It is not merely a matter of gastrointestinal signaling linked to hypothalamic peptides but also finding novel ways to improve ventral tegmental area (VTA) dopaminergic function and homeostasis.

Obesity is impacting on the lives of more than 300 million people worldwide [45] and maintaining a healthy weight using popular weight loss tactics remains a very difficult undertaking. Managing the obesity problem seems within reach, as a better understanding of the function of our genome in drug/nutrient responses develops.

The literature is rife with research and reviews related to the role of dopamine and other neurotransmitters and their neurological interactions within the reward circuitry [46-59]. Indeed, following their first genetic study that found that severe alcoholism associated with the Taq A1 allele of the dopamine D2 receptor gene (D2R) [60], Blum., et al. [61] delineated "Reward Deficiency Syndrome (RDS)". RDS is the result of a malfunction of "Brain Reward Cascade" neurotransmission [59]. This dysfunction directly links to abnormal craving and reduced executive function (decision making), involving multiple reward-gene and second-messenger deficits across prefrontal and mesolimbic systems. In contrast, the functional collaboration of dopamine with other neurotransmitters such as serotonin and opioids (neuropeptides), supports a sense of well-being and is relevant even in cocaine abuse contexts [62-66].

In our opinion there are a number of important strategies to overcome obesity. For example: 1) further investigate hypothalamic energy regulation and how metabolic hormones affect VTA dopamine neurons; 2) identify neurobiological mechanisms shared between food and drug addiction; 3) expand neuroimaging on dopamine in food addiction, brain metabolism, and addiction transfer following bariatric surgery, and probe the role of non-coding miRNAs in drug addiction and the epigenetics of metabolic syndrome; 4) detect early-life chromatin modifications of imprinted genes that regulate nutrients during fetal development; 5) develop treatments that epigenetically target deficient metabolic pathways, including dietary supplementation with phytochemicals, vitamins, and functional amino acids.

However, to appreciate the role of the neural reward circuitry and dopamine regulation in obesity, we must revisit gut-hypothalamic mechanisms.

Gut-hypothalamic homeostatic energy regulation

The first reported connection between the ventromedial hypothalamus (VMH) and obesity came from Hetherington and Ranson who in 1940 found that lesions of the VMH resulted in hyperphagia (overeating) and obesity in rats [67]. The lesioning was extensive, involving the ventromedial (VMN) and arcuate (ARC) nuclei [68,69]. The importance of the ARC subsequently became an intense focus. The regulation of energy (glucose homeostasis) was linked to the Proopiomelanocortin (POMC) and neuropeptide Y (NPY)/agouti-related peptide (AgRP) neurons within the ARC [70]. In contrast, profound anorexia and weight loss were produced when Anand and Brobeck created extensive lesions of the lateral hypothalamic area (LHA). The hypothalamic "dual-center" hypothesis with the "satiety center" located in the VMH and the "feeding center" at the LHA site proposed by Stellar was initially dominant [71]; however, a distributed-control view now appears more parsimonious. Grill., et al. [28] emphasized that energy control is distributed across a network of sites. Lesions in one part of the brain can shift body weight and adiposity [72].

The set point dilemma

Keely and others suggested that VMH and LHA lesions provided evidence that weight "set point" might depend on external and internal environments (neural substrates) [73] and that a parsimonious feedback signal likely monitors peripheral metabolic status to regulate energy homeostasis. Kennedy [74] proposed a "lipostatic" hypothesis in which adipose stores supply a negative-feedback signal. Kennedy suggested that a negative-feedback system signals in proportion to adipose tissue mass to regulate intake or expenditure and maintain body fat within a predetermined set point (See figure 2) [74].

The hormone leptin, secreted in proportion to fat mass, was eventually found [75]. The idea of a "set point" (preserved body weight) is still controversial, with articles supporting [76] and opposing it [77-79]. Interestingly, researchers have found that in certain rodent strains and most humans that become obese the "preserved" body weight can be readily driven upward, while efforts to move below an elevated set point fail in \sim 90% of individuals [80-85]. This set point dilemma continues to be a central focus of weight loss researchers and may have some relationship to a similar set point observed in the drug abuse literature [86].

Homeostatic systems

The hypothalamus integrates the hormonal, autonomic, and somatomotor regulation of nutrient levels in the body by orchestrating neuroendocrine homeostatic responses [84]. The networks that control central system energy homeostasis are distributed, interconnected neural circuits [87-90]. Two neuronal types that control energy balance are the hypothalamic anorexigenic POMC neurons, and the orexigenic NPY/AgRP neurons [91,92]. Trans-synaptic GABA neurons can modulate POMC neuronal activity indirectly via inputs arising from NPY neurons [93-95]. ARC POMC and NPY neurons project widely into several hypothalamic and extra-hypothalamic sites that shape consumption [96]. Outputs from the paraventricular nucleus (PVN) to endocrine, autonomic, and somatomotor systems [97-99], as well as the pre-autonomic brain stem and spinal cord [100,101], are involved in feeding and energy balance regulation.

Ventral tegmental area (VTA) dopamine neurons are modified by metabolic hormones, such as leptin and ghrelin. Leptin suppresses VTA dopaminergic activity, and the hyperphagia of leptin-deficient mice is reduced when dopamine signaling is absent [102-105]. Conversely, the direct introduction of ghrelin into the VTA enhances feeding [106,107].

Feeding behavior regulation by dopaminergic systems

Given the complexity of dopamine signaling across brain regions described in this review, we highlight differences in the sensitivity and regulation of dopaminergic function. The tuberoinfundibular dopaminergic (TIDA) neurons link the hypothalamus to the pituitary (hormonal regulation, nurturing, pregnancy, sensory processes), while the nigrostriatal pathway connects the substantia nigra to the striatum (motor control); the mesolimbic and mesocortical reward circuits originate in the VTA.

As early as 1984, Moore's group [108] reported differences in dopamine-mediated receptors between the nigrostriatal/mesolimbic systems and the hypothalamic TIDA neurons. Moore [109] further emphasized that anatomically distinct dopaminergic systems subserve diverse functions-maintaining postural reflexes, modulating basic psychic processes, and controlling pituitary hormone secretion linked to food intake. Each system is regulated by mechanisms appropriate to its function. Annunziato [110] showed that dopamine receptors in the anterior pituitary are more sensitive to agonists and antagonists than those in the striatum. Moreover, Demarest and Moore [111] noted that dopamine synthesis regulation in terminals of nigrostriatal, mesolimbic, and tuber hypophyseal nerves differs from tuberoinfundibular nerves, which lack an autoreceptors regulatory mechanism. Thus, dopaminergic responses vary by system and location-an essential consideration when explaining relationships between food and drugs.

Most animals and humans override homeostatic satiety when faced with highly palatable foods rich in sugar and fat [112]. Hedonic stimuli engage reward circuits mediating "liking" (pleasure) and "wanting" (motivation) [113]. VTA dopamine neurons play a significant role in obesity [114,115]. The mesolimbic pathway links the hippocampus and VTA to medial prefrontal cortex, nucleus accumbens, and amygdala.

Food and drug addiction identification of common neurobiological mechanisms

The idea that food and drugs share neurobiological and neurogenetic mechanisms was articulated by Hoebel over 30 years ago [115] and brought to mainstream attention by Gold, Avena, and colleagues [116-130]. Clinically, permitting candy in treatment settings may facilitate "addiction transfer" from alcohol, opiates, or cocaine to glucose. Current estimates suggest that roughly twenty percent of individuals undergoing lap-band surgery develop new-onset drug addiction post-surgery. This phenomenon of substituting drugs for food has been studied in both human and animal clinical trials. It is plausible that variants in reward-circuit genes reduce dopamine function and heighten craving for both glucose and alcohol. Conversely, during protracted (>3 weeks) abstinence from alcohol and other substances, some individuals may enter a "hyperdopaminergic," epigenetically influenced state characterized by elevated extracellular DA levels [131].

Regarding RDS, it is noteworthy, that both substance and non-substance addictive behaviors like food (glucose), opiates, alcohol, nicotine, internet gaming, gambling, music, and sex all trigger dopamine release in the nucleus accumbens. This acute release of dopamine leads to feelings of well-being in the very short term, especially in individuals who, through gene polymorphisms (variants), environmental factors, or both, have compromised dopaminergic function. The environmental compromise of dopaminergic function can be mediated epigenetically via expression of many genes; for example, DNA methylation (reduced expression) or inhibition of histone deacetylation (increased expression) within chromatin [131]. The core concept is the formula, Phenotype equals Genetics plus Environment [P = G + E]. This reflects a complex set of interactions involving many polymorphic genes and their subsequent interaction with the environment. Thus, if the hypodopaminergic effect of specific genetic reward polymorphisms is compounded by an unsatisfactory environment, further decreasing dopamine function, the affected person may attempt to boost brain dopamine. They may self-medicate to obtain a transient dopamine "fix" via behaviors (e.g. food, drugs, or sex that cause the acute release of dopamine**)** [132-135].

Although, addiction to food is not the source of all cases of obesity, research has shown that obesity produces alterations in behaviors and brain structures similar to those alterations seen in drug addiction. Might it be presumed that a considerable number of people no longer eat to survive, but rather survive to eat; are we serving up enough dopamine for dinner?

Within the framework of the brain's reward system with regard to food consumption, the "thrifty gene hypothesis" (a survival gene linked to famine and fat metabolism) and the commonality between food and drug addictions [136,137] are important. Food and drug consumption engage both homeostatic and hedonic reinforcers, activating connections within overlapping neural circuits [138-142]. Several regions of the brain are involved in the reinforcement of both drug and food intake [143-146], and numerous neurotransmitters and hormones have been examined in these and related regions [147-149]. Extensive literature supports these commonalities, including work by Avena's group [150-152] and by Blum., *et al.* [153].

In clinical situations, reciprocal comorbidity of food and drug addictions typically appears in the literature. This overlap warrants intensive investigation [154-157]. Have a common phenotype and treatment been identified for these seemingly distinct conditions?

Recent changes in the nomenclature of addictions indicate a significant shift in the conceptualization of addictions, where non-substance behaviors may also be classified as addictions. Extensive data provide empirical evidence that there are overlaps of different types of addictive behaviors in etiology, phenomenology, and in the underlying psychological and biological mechanisms. One study by Kotyuk., et al. [158] reported an epidemiological analysis carried out as part of the Psychological and Genetic Factors of the Addictive Behaviors (PGA) Study, collecting data from 3,003 adolescents and young adults (42.6% males; mean age 21 years). Addictions to psychoactive substances and behaviors were rigorously assessed. They reported lifetime occurrences of the assessed substance uses, their co-occurrences, the prevalence estimates of specific behavioral addictions, and co-occurrences of different substance use and potentially addictive behaviors. Associations were found between (i) smoking and problematic Internet use, exercising, eating disorders, and gambling; (ii) alcohol consumption and problematic Internet use, problematic online gaming, gambling, and eating disorders; and (iii) cannabis use and problematic online gaming and gambling. The results suggest a large overlap between the occurrence of these addictions and behaviors and underscore the importance of investigating the possible common psychological, genetic, and neural pathways. These data further support concepts such as the Reward Deficiency Syndrome and the component model of addictions that propose a common phenomenological and etiological background of different addictive and related behaviors.

Although overeating may have significant neurochemical associations with drug abuse [159], regarding other eating disorders such as bulimia [160] and anorexia [161,162] less is known. Nonetheless, evidence is accumulating that similar gene polymorphisms confer risk across food- and drug-related phenotypes. Common risk alleles like the A1 form of the dopamine type 2 receptor (DRD2) gene, found to associate with eating disorders such as binge eating disorder, bulimia, and anorexia also associate with substance abuse in genetic studies.

Utilizing sophisticated neuroimaging, especially positron emission tomography (PET), Gene-Jack Wang, Nora Volkow, Peter K. Thanos, and others have contributed to the field with valuable insights regarding the molecular role of dopamine function and obesity [163-193]. This line of work began with a PET study showing an inverse relationship between Body Mass Index (BMI) and dopamine in obese humans. The same group found that the availability of dopamine D2 receptor was reduced in obese individuals and inversely related to BMI. Dopamine moderates reward and incentive circuits and thus, dopamine deficits in obese individuals may prolong disordered eating to balance the reduced stimulation of these circuits. In a recent study, Thanos., *et al.* [194] provided strong evidence from animal studies that dopamine D2 gene expression can impact behaviors throughout an entire lifespan. They found that both locomotor activity and body weight were moderated by an enriched environment and that mice from an enriched environment showed greater behavioral variability between genotypes compared to mice from a deprived environment.

Summary

Genetic researchers have asked whether some individuals possess genetically fragile opioid systems that could implode when exposed to exogenous opioids. The genetic addiction risk score (GARS) predicts vulnerability to opioid dependence [195]. These findings argue that Endorphinergic Deficiency Syndrome, a subset of RDS [196], rather than a generalized opioid deficiency syndrome, underlies the opioid epidemic. Gold's work on concurrent inhibition of the locus coeruleus by alpha-2 adrenergic systems supports novel pharmacological therapies like clonidine and lofexidine [197], facilitates rapid and slow nonopioid detoxification, and suggests possible new treatments for craving and anxiety. The current emphasis on opioid replacement in opioid use disorders (OUD) rests on an unproven disease model. Oddly, the most efficacious treatments for OUDs promote compliance [198], are pharmacologically close to abused opioids, and can lead to dependence on the treatment itself, making discontinuation unlikely [199]. The brain does not exhibit a specific "opiate/opioid deficiency" phenotype per se.

However, methadone and buprenorphine treatments remain first-line for most, if not all, patients with OUDs [200]. As in early methadone maintenance, opioid replacement is often analogized to insulin for diabetes, yet dosing targets receptor saturation/blockade of exogenous reinforcement rather than endogenous opioid physiology [201]. Dose escalation in medication-assisted treatment (MAT) may further compromise the patient's ability to ever recover from an underlying Endorphinergic Deficiency Syndrome. Relatively opioid naïve OUD patients may develop an iatrogenic endorphin deficiency. Exogenous opioids can induce Dopamine Deficiency Syndrome (DDS), also a subset of RDS, as well as depression and anhedonia, potentially driving continued opioid seeking, misuse, and overeating [202].

Most guidelines around the world recommend psychosocially assisted agonist maintenance therapy, rather than medication alone, as a treatment for OUD. During the pandemic, access to this support was often limited, leading some patients to drop out, and others to adopt telemedicine and technology-assisted behavioral therapies while continuing their MATs.

The finding that dopamine neurons and their location can show different responses to the same substance must be considered when explaining the relationship between food and drugs. In one pharmacological example, Syvälahti [203] showed that the antipsychotic activity of neuroleptic drugs yields distinct pathway effects. Both nigrostriatal (induce extrapyramidal symptoms) and tuberoinfundibular mechanisms (increases prolactin levels) may co-occur while the mesocortical effects (reduced symptoms of schizophrenia) of antipsychotic drugs are sought after. Thus, we must account for these differences, especially when considering therapeutic targets and shared mechanisms between food and drugs.

While the Hypothalamic-Gut Axis plays a major role in nutrient selection, therapeutic targets to prevent food addiction include Pro-Dopamine Regulation (See figure 1). Converging support from fMRI in humans and animal research supports the theory that distributed neurobiological circuits are disturbed in addiction, metabolic syndrome, and obesity. Altered dopamine reward circuits contribute to

pathologic food consumption behaviors. For example, Chen., *et al.* [204] reported that, compared with the dopamine D2 TaqA2 allele, there is a high correlation of high percent body fat with the D2 TaqA1 allele (See figure 5 and other associations involving the DRD2 A1 allele). Given the commonality of neuro mechanisms between drug and glucose addiction, and evidence from neuroimaging and epigenetic studies, dopamine-agonist treatment strategies that epigenetically target disrupted dopamine pathways-rather than current antagonist approaches-may succeed.

Figure 5: Schematic of DRD2 A1 allele and associations with RDS behaviors.

Pathways that affect dopamine signaling, molecular transport, and nervous system development are implicated in these approaches. Obesity is a subtype of RDS, and emerging prevention/treatment strategies target improved dopamine function. Neurogenetic evidence supporting pro-dopamine regulation appears sound [205].

Balanced dopaminergic activity that supports resting-state functional connectivity in the mesolimbic system may promote healthier choices and reduced craving [206]. Accordingly, novel approaches that balance dopamine and enhance well-being are encouraged to

treat and prevent obesity. Pursuing this therapeutic direction may help shift addictions to food, drugs, and other behaviors. Beyond gastrointestinal-hypothalamic peptide signaling, the aim is to improve ventral tegmental area (VTA) dopaminergic function and homeostasis (see figure 1).

Based on this seminal research, and unlike other existing genetic tests, The USA and Foreign patented GARS test is, to our knowledge, the first validated Genetic Addiction Risk Severity test with important clinical benefits, including personalized medicine and assessment of RDS risk severity (e.g. alcoholism), as first suggested by our group. The test will also include the cytochrome P450 system of genetic variants that influence how individuals metabolize opioids. Our laboratory continues to develop other specific genetic tests for obesity, ADHD, and PTSD. As discussed, early identification of genetic antecedents will inform targeted systems therapeutics [207,208].

Policy implications and real-world recommendations

The scientific rationale for pro-dopamine regulation is compelling, but its translation into practice requires more than laboratory evidence. The policy landscape is largely shaped by pharmaceutical paradigms, which often leave little room for innovations such as nutraceuticals. A practical path forward involves setting baseline quality safeguards, developing payer mechanisms that allow access beyond boutique markets, and embedding these supports in a way that complements-not replaces-existing treatments.

All nutraceuticals, sometimes referred to as "neutraceutical" when they target brain-specific pathways, are already required under U.S. law to be produced in facilities compliant with Good Manufacturing Practices (GMP). This baseline, however, does not guarantee public confidence. Voluntary third-party certifications, such as those offered by USP, NSF, or ISO, can provide additional assurance of identity, purity, and consistency. These certifications should be understood not as additional regulatory hurdles, but as complementary trustbuilding measures. Encouraging the use of USP-grade raw materials would further enhance quality and reliability without imposing the heavy burdens of a pharmaceutical approval pathway.

Equally important is how these supports are paid for. If nutraceuticals remain confined to cash-pay boutique models, access will be inequitable and limited to the privileged few. Instead, coverage mechanisms should be explored through demonstration projects and value-based payment models. For example, CMMI pilots could integrate nutraceuticals into bundled care alongside medication-assisted therapy, behavioral counseling, and lifestyle interventions. In this model, reimbursement would hinge not on the capsule itself but on measurable outcomes such as reduced craving, improved adherence, fewer relapses, stabilized weight, and patient-reported wellbeing. Private insurers could follow suits where quality standards are met, and real-world data suggest cost savings through reduced hospitalizations or improved function. Until such coverage mechanisms mature, philanthropic and patient-assistance programs may serve as interim bridges, but the long-term goal must be payer-integrated access to ensure equity.

The research agenda must also adapt. Pharmaceutical randomized controlled trials will remain the gold standard for drugs, but nutraceuticals can be evaluated effectively through pragmatic trials, registries, and observational studies that capture outcomes in realworld contexts. Independent replication is desirable, but policy should not erect barriers that prevent safe, evidence-supported products from being tested in practice. Transparency is essential: label claims should be tied to available evidence, and registries should make outcomes public. Nutraceutical use must always remain voluntary, patient- and clinician-driven, and accessible across socioeconomic groups.

Within this broader category, pro-dopamine regulators represent a particularly promising direction. KB220, the most extensively studied prototype, illustrates how such formulations can be investigated and applied responsibly across preclinical, imaging, and clinical

contexts. It should not be subjected to retrospective regulatory hurdles; rather, it serves as a reference point for how future products might aspire to meet both scientific and clinical expectations. Policy ought to recognize KB220 as an exemplary, while ensuring that any similar entrants meet at least the baseline of GMP compliance and are encouraged to pursue complementary third-party certification. This approach safeguards patients without stifling innovation and sets a trajectory where trust is built on transparency, quality, and real-world outcomes.

In sum, the challenge is not to force nutraceuticals through the same regulatory funnel as pharmaceuticals, but to establish pragmatic standards that protect patients, foster innovation, and encourage equitable access. GMP compliance, complemented by voluntary third-party verification, offers a credible quality baseline. Coverage mechanisms that reward outcomes rather than ingredients can make these supports accessible to broader populations. Research structures adapted to real-world practice can build the evidence base further. And exemplars such as KB220 demonstrate that decades of responsible investigation can chart a course for others. By grounding policy in these real-world recommendations, it is possible to align innovation with patient safety, payer confidence, and societal equity.

Conclusion

Clinically, the future is here, and the treatment of chronic addiction depends on scientifically sound, evidence-based early genetic risk determinations that enable personalized patient care rather than fictional, hypothetical, or theoretical practices.

Bibliography

- Blum K. "Reward deficiency syndrome". In: Wenzel A., editor. The Sage Encyclopedia of Abnormal Clinical Psychology. Sage Publications Pennsylvania (2017).
- 2. Gondré-Lewis MC., et al. "Pre-clinical models of reward deficiency syndrome: A behavioral octopus". Neuroscience and Biobehavioral Reviews 115 (2020): 164-188.
- 3. Comings DE and Blum K. "Reward deficiency syndrome: genetic aspects of behavioral disorders". *Progress in Brain Research* 126 (2000): 325-341.
- 4. Berridge KC and Robinson TE. "Liking, wanting, and the incentive-sensitization theory of addiction". *American Psychologist* 71.8 (2016): 670-679.
- 5. Myers RD and Cicero TJ. "Effects of serotonin depletion on the volitional alcohol intake of rats during a condition of psychological stress". *Psychopharmacologia* 15.5 (1969): 373-381.
- 6. Kleykamp BA., et al. "Time to reconsider the role of craving in opioid use disorder". JAMA Psychiatry 76.11 (2019): 1113-1114.
- 7. Smith DE. "The process addictions and the new ASAM definition of addiction". Journal of Psychoactive Drugs 44.1 (2012): 1-4.
- 8. Geller I and Blum K. "The effects of 5-HTP on Para-Chlorophenylalanine (p-CPA) attenuation of "conflict" behavior". *European Journal of Pharmacology* 9.3 (1970): 319-324.
- 9. Reiter RJ., et al. "Effect of the pineal gland on alcohol consumption by congenitally blind male rats". Quarterly Journal of Studies on Alcohol 34.3 (1973): 937-939.
- 10. Geller I. "Ethanol preference in the rat as a function of photoperiod". Science 173.3995 (1971): 456-459.
- 11. Blum K., et al. "A possible relationship between the pineal gland and ethanol preference in the rat". Current Therapeutic Research Clinical and Experimental 15.1 (1973): 25-30.

Citation: Kenenth Blum., *et al.* "Inducing Dopamine Homeostasis to Combat Brain-Gut Functional Impairment as a Function of Behavioral and Neurogenetic Correlates of Reward Deficiency Syndrome (RDS)". *EC Neurology* 17.11 (2025): 01-25.

- 12. Reiter RJ., et al. "Pineal gland: evidence for an influence on ethanol preference in male Syrian hamsters". *Comparative Biochemistry and Physiology Part A* 47.1 (1974): 11-16.
- 13. Raiewski EE., et al. "Twice daily melatonin peaks in Siberian but not Syrian hamsters under 24 h light: dark: light: dark cycles". Chronobiology International 29.9 (2012): 1206-1215.
- 14. Namboodiri MA., *et al.* "Serum melatonin and pineal indoleamine metabolism in a species with a small day/night N-acetyltransferase rhythm". *Comparative Biochemistry and Physiology Part B* 80.4 (1985): 731-736.
- 15. Coon SL., et al. "Circadian changes in long noncoding RNAs in the pineal gland". Proceedings of the National Academy of Sciences of the United States of America 109.33 (2012): 13319-13324.
- 16. Davis VE and Walsh MJ. "Alcohol, amines, and alkaloids: a possible biochemical basis for alcohol addiction". *Science* 167.3920 (1970): 1005-1007.
- 17. Cohen G and Collins M. "Alkaloids from catecholamines in adrenal tissue: possible role in alcoholism". *Science* 167.3926 (1970): 1749-1751.
- 18. Myers RD. "Isoquinolines, beta-carbolines and alcohol drinking: involvement of opioid and dopaminergic mechanisms". *Experientia* 45.5 (1989): 436-443.
- 19. Hamilton MG., *et al.* "Identification of an isoquinoline alkaloid after chronic exposure to ethanol". *Alcohol, Clinical and Experimental Research* 2.2 (1978): 133-137.
- 20. Blum K., et al. "Isoquinoline alkaloids as possible regulators of alcohol addiction". Lancet 1.8015 (1977): 799-800.
- 21. Marshall A., *et al.* "Analgesic effects of 3-carboxysalsolinol alone and in combination with morphine". *Experientia* 33.6 (1977): 754-755.
- 22. Hamilton MG., *et al.* "Opiate-like activity of salsolinol on the electrically stimulated Guinea pig ileum". *Life Sciences* 25.26 (1979): 2205-2210.
- 23. Blum K., et al. "Opioid responses of isoquinoline alkaloids (TIQs)". Progress in Clinical and Biological Research 90 (1982): 387-398.
- 24. Blum K. "Narcotic antagonism of seizures induced by a dopamine-derived tetrahydroisoquinoline alkaloid". *Experientia* 44.9 (1988): 751-753.
- 25. Blum K., et al. "Sex, drugs, and rock 'n' roll: hypothesizing common mesolimbic activation as a function of reward gene polymorphisms". *Journal of Psychoactive Drugs* 44.1 (2012): 38-55.
- 26. Dackis CA and Gold MS. "Pharmacological approaches to cocaine addiction". *Journal of Substance Abuse Treatment* 2.3 (1985): 139-145.
- 27. Wang GJ., et al. "Comparison of two PET radioligands for imaging extrastriatal dopamine receptors in the human brain". Synapse (New York, NY) 15.3 (1993): 246-249.
- 28. Boundy VA., *et al.* "Regulation of tyrosine hydroxylase promoter activity by chronic morphine in TH9.0-LacZ transgenic mice". *Journal of Neuroscience* 18.23 (1998): 9989-9995.
- 29. Comings DE., et al. "Association of the neutral endopeptidase (MME) gene with anxiety". Psychiatric Genetics 10.2 (2000): 91-94.
- 30. Comings DE., et al. "The proenkephalin gene (PENK) and opioid dependence". Neuroreport 10.5 (1999): 1133-1135.

- 31. Niikura K., et al. "Neuropathic and chronic pain stimuli downregulate central mu-opioid and dopaminergic transmission". *Trends in Pharmacological Sciences* 31.7 (2010): 299-305.
- 32. Nylander I., *et al.* "The effects of morphine treatment and morphine withdrawal on the dynorphin and enkephalin systems in Sprague-Dawley rats". *Psychopharmacology* 118.4 (1995): 391-400.
- 33. Manninen S., et al. "Social laughter triggers endogenous opioid release in humans". Journal of Neuroscience 37.25 (2017): 6125-6131.
- 34. Kami K., et al. "Exercise-induced hypoalgesia: potential mechanisms in animal models of neuropathic pain". *Anatomical Science International* 92.1 (2017): 79-90.
- 35. Hicks SD., et al. "The transcriptional signature of a Runner's high". Medicine and Science in Sports and Exercise 51.5 (2019): 970-978.
- 36. Tuenter E., et al. "Mood components in cocoa and chocolate: the mood pyramid". Planta Medica 84.12-13 (2018): 839-844.
- 37. Blum K., *et al.* "Hypothesizing music intervention enhances brain functional connectivity involving dopaminergic recruitment: common neuro-correlates to abusable drugs". *Molecular Neurobiology* 54.5 (2017): 3753-3758.
- 38. Henry MS., et al. "Enkephalins: endogenous analgesics with an emerging role in stress resilience". Neural Plasticity (2017): 1546125.
- Mao L and Wang JQ. "Selective activation of group I metabotropic glutamate receptors upregulates preprodynorphin, substance P, and preproenkephalin mRNA expression in rat dorsal striatum". Synapse (New York, NY) 39.1 (2001): 82-94.
- 40. "Opioid peptides: molecular pharmacology, biosynthesis, and analysis". NIDA Research Monographs 70 (1986): 1-414.
- 41. Wagner JJ., et al. "Focal stimulation of the mossy fibers releases endogenous dynorphins that bind kappa 1-opioid receptors in Guinea pig hippocampus". *Journal of Neurochemistry* 57.1 (1991): 333-343.
- 42. Watanabe Y., et al. "Stimulation of accumbal GABA(B) receptors inhibits delta1- and delta2-opioid receptor-mediated dopamine efflux in the nucleus accumbens of freely moving rats". European Journal of Pharmacology 837 (2018): 88-95.
- 43. Szutorisz H and Hurd YL. "Epigenetic effects of cannabis exposure". Biological Psychiatry 79.7 (2016): 586-594.
- 44. Dolbin-MacNab ML and O'Connell LM. "Grandfamilies and the opioid epidemic: a systemic perspective and future priorities". *Clinical Child and Family Psychology Review* 24.2 (2021): 207-223.
- 45. Obesity and Overweight [PDF on the internet] World Health Organization (2017).
- 46. Tolosa E., et al. "History of levodopa and dopamine agonists in Parkinson's disease treatment". Neurology 50.6 (1998): S2-10, S44-S48.
- 47. Kumar B., *et al.* "A perspective on monoamine oxidase enzyme as drug target: challenges and opportunities". *Current Drug Targets* 18.1 (2017): 87-97.
- 48. Stracina T., et al. "Long-term haloperidol treatment prolongs QT interval and increases expression of sigma 1 and IP3 receptors in guinea pig hearts". Tohoku Journal of Experimental Medicine 236.3 (2015): 199-207.
- 49. Athanasiu L., et al. "Genome-wide association study identifies common variants associated with pharmacokinetics of psychotropic drugs". *Journal of Psychopharmacology* 29.8 (2015): 884-891.
- 50. Blum K. "The effect of dopamine and other catecholamines on neuromuscular transmission". *Archives Internationales de Pharmacodynamie et de Thérapie* 181.2 (1969): 297-306.

- 51. Blum K., et al. "Suppression of ethanol withdrawal by dopamine". Experientia 32.4 (1976): 493-495.
- 52. Blum K., et al. "Morphine suppression of ethanol withdrawal in mice". Experientia 32.1 (1976): 79-82.
- 53. Blum K and Wallace JE. "Effects of catecholamine synthesis inhibition on ethanol-induced withdrawal symptoms in mice". *British Journal of Pharmacology* 51.1 (1974): 109-111.
- 54. Cohen J., et al. "The mechanism of alpha-adrenergic inhibition of catecholamine release". British Journal of Pharmacology 71.1 (1980): 135-142.
- 55. Yoshimura K. "Activation of Na-K activated ATPase in rat brain by catecholamine". Journal of Biochemistry 74.2 (1973): 389-391.
- 56. Myers RD., et al. "Amine-aldehyde metabolites and alcoholism: fact, myth or uncertainty". Substance and Alcohol Actions/Misuse 1 (1980): 223-238.
- 57. Melchior CL and Myers RD. "Genetic differences in ethanol drinking of the rat following injection of 6-OHDA, 5,6-DHT or 5,7-DHT into the cerebral ventricles". *Pharmacology Biochemistry and Behavior* 5.1 (1976): 63-67.
- 58. Gold MS., *et al.* "Low dopamine function in attention deficit/hyperactivity disorder: should genotyping signify early diagnosis in children?" *Postgraduate Medicine* 126.1 (2014): 153-177.
- 59. Helinski S and Spanagel R. "Publication trends in addiction research". Addiction Biology 16.4 (2011): 532-539.
- 60. Blum K and Kozlowski GP. "Ethanol and neuromodulator influences: A cascade model of reward". In: Ollat H, Parvez S, Parvez H (Eds). Alcohol and behaviour: Basic and clinical aspects. Utrecht, Netherlands: VSP (1990).
- 61. Blum K., et al. "Allelic association of human dopamine D2 receptor gene in alcoholism". Journal of the American Medical Association 263.15 (1990): 2055-2060.
- 62. Blum K., et al. "The D2 dopamine receptor gene as a determinant of reward deficiency syndrome". Journal of the Royal Society of Medicine 89.7 (1996): 396-400.
- 63. Volkow ND., et al. "Predominance of D2 receptors in mediating dopamine's effects in brain metabolism: effects of alcoholism". *Journal of Neuroscience* 33.10 (2013): 4527-4535.
- 64. Hikida T., *et al.* "Neural mechanisms of the nucleus accumbens circuit in reward and aversive learning". *Neuroscience Research* 108 (2016): 1-5.
- 65. Fields HL and Margolis EB. "Understanding opioid reward". Trends in Neurosciences 38.4 (2015): 217-225.
- 66. Sadakierska-Chudy A., *et al.* "Prolonged induction of miR-212/132 and rest expression in rat striatum following cocaine self-administration". *Molecular Neurobiology* 54.3 (2017): 2241-2254.
- 67. Hetherington AW and Ranson SW. "Hypothalamic lesions and adiposity in the rat". The Anatomical Record 78.2 (1940): 149-172.
- 68. Dube MG., *et al.* "Disruption in neuropeptide Y and leptin signaling in obese ventromedial hypothalamic-lesioned rats". *Brain Research* 816.1 (1999): 38-46.
- 69. Scallet AC and Olney JW. "Components of hypothalamic obesity: bipiperidyl-mustard lesions add hyperphagia to monosodium glutamate-induced hyperinsulinemia". *Brain Research* 374.2 (1986): 380-384.
- 70. Schwartz MW., *et al*. "Central insulin administration reduces neuropeptide Y mRNA expression in the arcuate nucleus of food-deprived lean (Fa/Fa) but not obese (fa/fa) Zucker rats". *Endocrinology* 128.5 (1991): 2645-2647.

- 71. Stellar E. "The physiology of motivation". Psychological Review 61.1 (1954): 5-22.
- 72. Grill HJ and Kaplan JM. "The neuroanatomical axis for control of energy balance". Frontiers in Neuroendocrinology 23.1 (2002): 2-40.
- 73. Keesey RE., et al. "Body weight and body composition of male rats following hypothalamic lesions". American Journal of Physiology-Regulatory, Integrative and Comparative Physiology 237.1 (1979): R68-R73.
- 74. Kennedy GC. "The role of depot fat in the hypothalamic control of food intake in the rat". *Proceedings of the Royal Society of London. Series B, Biological Sciences* 140.901 (1953): 578-596.
- 75. Zhang Y., et al. "Positional cloning of the mouse obese gene and its human homologue". Nature 372.6505 (1994): 425-432.
- 76. Keesey RE and Powley TL. "Body energy homeostasis". Appetite 51.3 (2008): 442-445.
- 77. Payne PR and Dugdale AA. "Mechanisms for control of body weight". Lancet 1.8011 (1977): 583-568.
- 78. Speakman JR., *et al.* "Set points, settling points and some alternative models: theoretical options to understand how genes and environments combine to regulate body adiposity". *Disease Models and Mechanisms* 4.6 (2011): 733-745.
- 79. Wirtshafter D and Davis JD. "Set points, settling points, and the control of body weight". Physiology and Behavior 19.1 (1977): 75-78.
- 80. Levin BE. "Metabolic imprinting on genetically predisposed neural circuits perpetuates obesity". Nutrition 16.10 (2000): 909-915.
- 81. Levin BE and Dunn-Meynell AA. "Defense of body weight depends on dietary composition and palatability in rats with diet-induced obesity". *American Journal of Physiology-Regulatory, Integrative and Comparative Physiology* 282.1 (2002): R46-R54.
- 82. Levin BE and Keesey RE. "Defense of differing body weight set-points in diet-induced obese and resistant rats". *American Journal of Physiology-Regulatory, Integrative and Comparative Physiology* 274 (1998): R412-R419.
- 83. Fields HL and Margolis EB. "Understanding opioid reward". Trends in Neurosciences 38.4 (2015): 217-225.
- 84. Bouret S., et al. "Gene-environment interactions controlling energy and glucose homeostasis and the developmental origins of obesity". *Physiological Reviews* 95.1 (2015): 47-82.
- 85. Thanos PK., *et al.* "Food restriction markedly increases dopamine D2 receptor (D2R) in a rat model of obesity as assessed with *in-vivo* muPET imaging ([11C] raclopride) and *in-vitro* ([3H] spiperone) autoradiography". *Synapse* 62.1 (2008): 50-61.
- 86. Zou Z., et al. "Definition of substance and non-substance addiction". Advances in Experimental Medicine and Biology 1010 (2017): 21-41.
- 87. Grill HJ. "Distributed neural control of energy balance: contributions from hindbrain and hypothalamus". *Obesity* 14.5 (2006): 216S-221S.
- 88. Grill HJ and Hayes MR. "Hindbrain neurons as an essential hub in the neuroanatomically distributed control of energy balance". *Cell Metabolism* 16.3 (2012): 296-309.
- 89. Levin BE., et al. "Role of neuronal glucosensing in the regulation of energy homeostasis". Diabetes 55.2 (2006): S122-S130.
- 90. Cone RD. "Anatomy and regulation of the central melanocortin system". Nature Neuroscience 8.5 (2005): 571-578.
- 91. Sohn JW., et al. "Neuronal circuits that regulate feeding behavior and metabolism". Trends in Neurosciences 36.9 (2013): 504-512.

- 92. Andrews ZB., et al. "UCP2 mediates ghrelin's action on NPY/AgRP neurons by lowering free radicals". Nature 454.7206 (2008): 846-851.
- 93. Cowley MA., *et al.* "The distribution and mechanism of action of ghrelin in the CNS demonstrates a novel hypothalamic circuit regulating energy homeostasis". *Neuron* 37.4 (2003): 649-661.
- 94. Tong Q., *et al.* "Synaptic release of GABA by AgRP neurons is required for normal regulation of energy balance". *Nature Neuroscience* 11.9 (2008): 998-1000.
- 95. He Z., *et al.* "Direct and indirect effects of liraglutide on hypothalamic POMC and NPY/AgRP neurons Implications for energy balance and glucose control". *Molecular Metabolism* 28 (2019): 120-134.
- 96. Broberger C., et al. "The neuropeptide Y/agouti gene-related protein (AGRP) brain circuitry in normal, anorectic, and monosodium glutamate-treated mice". *Proceedings of the National Academy of Sciences of the United States of America* 95.25 (1998): 15043-15048.
- 97. Beck B., et al. "Hyperphagia in obesity is associated with a central peptidergic dysregulation in rats". Journal of Nutrition 120.7 (1990): 806-811.
- 98. Sawchenko PE. "Toward a new neurobiology of energy balance, appetite, and obesity: the anatomists weigh in". *Journal of Comparative Neurology* 402.4 (1998): 435-441.
- 99. Swanson LW and Sawchenko PE. "Hypothalamic integration: organization of the paraventricular and supraoptic nuclei". *Annual Review of Neuroscience* 6 (1983): 269-324.
- 100. Watts AG. "Understanding the neural control of ingestive behaviors: helping to separate cause from effect with dehydration-associated anorexia". *Hormones and Behavior* 37.4 (2000): 261-283.
- 101. Abizaid A., et al. "Ghrelin modulates the activity and synaptic input organization of midbrain dopamine neurons while promoting appetite". *Journal of Clinical Investigation* 116.12 (2006): 3229-3239.
- 102. Brunetti L., *et al.* "Leptin inhibits norepinephrine and dopamine release from rat hypothalamic neuronal endings". *European Journal of Pharmacology* 372.3 (1999): 237-240.
- 103. Pfaffly J., et al. "Leptin increases striatal dopamine D2 receptor binding in leptin-deficient obese (ob/ob) mice". Synapse 64.7 (2010): 503-510.
- 104. Muelbl MJ., et al. "Responses to drugs of abuse and non-drug rewards in leptin deficient ob/ob mice". Psychopharmacology (Berl) 233.14 (2016): 2799-2811.
- 105. Naleid A., *et al.* "Ghrelin induces feeding in the mesolimbic reward pathway between the ventral tegmental area and the nucleus accumbens". *Peptides* 26.11 (2005): 2274-2279.
- 106.Berthoud HR. "Multiple neural systems controlling food intake and body weight". *Neuroscience and Biobehavioral Reviews* 26.4 (2002): 393-428.
- 107. Furness JB., et al. "Dopamine and ghrelin receptor co-expression and interaction in the spinal defectaion centers". Neurogastroenterology and Motility 2 (2020): e14051.
- 108. Lookingland KJ and Moore KE. "Dopamine receptor-mediated regulation of Incerto hypothalamic dopaminergic neurons in the male rat". *Brain Research* 304.2 (1984): 329-338.
- 109. Moore KE. "Differential regulation of dopaminergic neurons in the mammalian brain: a brief review". *The Chinese Journal of Physiology* 35.1 (1992): 67-76.

- 110. Annunziato L. "Regulation of the tuberoinfundibular and nigrostriatal systems. Evidence for different kinds of dopaminergic neurons in the brain". *Neuroendocrinology* 29.1 (1979): 66-76.
- 111. Demarest KT and Moore KE. "Comparison of dopamine synthesis regulation in the terminals of nigrostriatal, mesolimbic, tuberoinfundibular and tuber hypophyseal neurons". *Journal of Neural Transmission* 46.4 (1979): 263-277.
- 112. Schulte EM., et al. "Which foods may be addictive? The roles of processing, fat content, and glycemic load". PLoS One 10.2 (2015): e0117959.
- 113. Blum K., et al. ""Liking" and "wanting" linked to Reward Deficiency Syndrome (RDS): hypothesizing differential responsivity in brain reward circuitry". Current Pharmaceutical Design 18.1 (2012): 113-118.
- 114. Szczypka MS., et al. "Dopamine is required for hyperphagia in Lep (ob/ob) mice". Nature Genetics 25.1 (2000): 102-104.
- 115. Hoebel BG. "Brain neurotransmitters in food and drug reward". American Journal of Clinical Nutrition 42.5 (1985): 1133-1150.
- 116. Gold MS and Avena NM. "Animal models lead the way to further understanding food addiction as well as providing evidence that drugs used successfully in addictions can be successful in treating overeating". *Biological Psychiatry* 74.7 (2013): e11.
- 117. Avena NM., et al. "Why are we consuming so much sugar despite knowing too much can harm us?" *JAMA Internal Medicine* 175.1 (2015): 145-146.
- 118. Zhang Y., et al. "Obesity: pathophysiology and intervention". Nutrients 6.11 (2014): 5153-5183.
- 119. Blum K., et al. "Dopamine and glucose, obesity, and reward deficiency syndrome". Frontiers in Psychology 5 (2014): 919.
- 120. Avena NM., et al. "Effects of baclofen and naltrexone, alone and in combination, on the consumption of palatable food in male rats". Experimental and Clinical Psychopharmacology 22.5 (2014): 460-467.
- 121. Avena NM., et al. "The next generation of obesity treatments: beyond suppressing appetite". Frontiers in Psychology 4 (2013): 721.
- 122. Yarnell S., et al. "Pharmacotherapies for overeating and obesity". Journal of Genetic Syndromes and Gene Therapy 4.3 (2013): 131.
- 123. Avena NM., *et al.* "Comparing the effects of food restriction and overeating on brain reward systems". *Experimental Gerontology* 48.10 (2013): 1062-1067.
- 124. Avena NM., *et al.* "Tossing the baby out with the bathwater after a brief rinse? The potential downside of dismissing food addiction based on limited data". *Nature Reviews Neurosciences* 13.7 (2012): 514.
- 125. Avena NM., et al. "Further developments in the neurobiology of food and addiction: update on the state of the science". Nutrition 28.4 (2012): 341-343.
- 126. Avena NM., et al. "Overlaps in the nosology of substance abuse and overeating: the translational implications of "food addiction"". *Current Drug Abuse Reviews* 4.3 (2011): 133-139.
- 127. Johnson RJ., *et al.* "Attention-deficit/hyperactivity disorder: is it time to reappraise the role of sugar consumption?" *Postgraduate Medicine* 123.5 (2011): 39-49.
- 128. Avena NM and Gold MS. "Variety and hyperpalatability: are they promoting addictive overeating?" *American Journal of Clinical Nutrition* 94.2 (2011): 367-368.
- 129. Avena NM and Gold MS. "Food and addiction sugars, fats and hedonic overeating". Addiction 106.7 (2011): 1214-1215.

- 130. Murray SM., et al. "Insights revealed by rodent models of sugar binge eating". CNS Spectrums 20.6 (2015): 530-537.
- 131. Hirth N., et al. "Convergent evidence from alcohol-dependent humans and rats for a hyperdopaminergic state in protracted abstinence". Proceedings of the National Academy of Sciences of the United States of America 113.11 (2016): 3024-3029.
- 132. Xu Q., et al. "Population transcriptomics uncovers the regulation of gene expression variation in adaptation to changing environment". Scientific Reports 6 (2016): 25536.
- 133. Nieoullon A., *et al.* "Contribution to the study of nigrostriatal dopaminergic neuron activity using electrochemical detection of dopamine release in the striatum of freely moving animals". *Annals of the New York Academy of Sciences* 473.1 (1986): 126-140.
- 134. Salimpoor VN., *et al.* "Anatomically distinct dopamine release during anticipation and experience of peak emotion to music". *Nature Neuroscience* 14.2 (2011): 257-262.
- 135. Blum K., *et al.* "Hypothesizing music intervention enhances brain functional connectivity involving dopaminergic recruitment: common neuro-correlates to abusable drugs". *Molecular Neurobiology* 54.5 (2017): 3753-3738.
- 136. Xu Q., et al. "Population transcriptomics uncovers the regulation of gene expression variation in adaptation to changing environment". Scientific Reports 6 (2016): 25536.
- 137. Korchounov A., et al. "Postsynaptic nigrostriatal dopamine receptors and their role in movement regulation". *Journal of Neural Transmission (Vienna)* 117.12 (2010): 1359-1369.
- 138. Salimpoor VN., et al. "Predictions and the brain: how musical sounds become rewarding". Trends in Cognitive Sciences 19.2 (2015): 86-91.
- 139. Solanki N., et al. "Administration of a putative pro-dopamine regulator, a neuronutrient, mitigates alcohol intake in alcohol-preferring rats". Behavioural Brain Research 385 (2020): 112563.
- 140. Speakman JR. "Thrifty genes for obesity and the metabolic syndrome--time to call off the search?" *Diabetes and Vascular Disease Research* 3.1 (2006): 7-11.
- 141. Prentice AM., et al. "Evolutionary origins of the obesity epidemic: natural selection of thrifty genes or genetic drift following predation release?" *International Journal of Obesity (London)* 32.11 (2008): 1607-1610.
- 142. Hernandez L and Hoebel BG. "Feeding can enhance dopamine turnover in the prefrontal cortex". *Brain Research Bulletin* 25.6 (1990): 975-979.
- 143. Kelley AE., et al. "Opioid modulation of taste hedonics within the ventral striatum". Physiology and Behavior 76.3 (2002): 365-377.
- 144. Le Magnen J. "Control of eating behaviour". Baillière's Clinical Gastroenterology 2.1 (1988): 169-182.
- 145. Volkow ND and Wise RA. "How can drug addiction help us understand obesity?" Nature Neuroscience 8.5 (2005): 555-560.
- 146. Wise RA., et al. "Facilitation of feeding by nucleus accumbens amphetamine injections: latency and speed measures". *Pharmacology Biochemistry and Behavior* 32.3 (1989): 769-772.
- 147. Kalivas PW and Volkow ND. "The neural basis of addiction: a pathology of motivation and choice". *American Journal of Psychiatry* 162.8 (2005): 1403-1413.
- 148. Koob GF and Le Moal M. "Plasticity of reward neurocircuitry and the 'dark side' of drug addiction". *Nature Neuroscience* 8.11 (2005): 1442-1444.

- 149. Mogenson GJ and Yang CR. "The contribution of basal forebrain to limbic-motor integration and the mediation of motivation to action". *Advances in Experimental Medicine and Biology* 295 (1991): 267-290.
- 150. Baldo BA., *et al.* "Control of fat intake by striatal opioids". In: Montmayeur JP, le Coutre J (Eds.). Fat Detection: Taste, Texture, and Post Ingestive Effects. Boca Raton, FL: CRC Press (2010).
- 151. Simpson N., et al. "Dopamine-mediated autocrine inhibitory circuit regulating human insulin secretion in vitro". Molecular Endocrinology 26.10 (2012): 1757-1772.
- 152. Spangler R., et al. "Opiate-like effects of sugar on gene expression in reward areas of the rat brain". Brain Research. Molecular Brain Research 124.2 (2004): 134-142.
- 153. Schoffelmeer AN., et al. "Morphine acutely and persistently attenuates nonvesicular GABA release in rat nucleus accumbens". Synapse 42.2 (2001): 87-94.
- 154. Stein L and Belluzzi JD. "Brain endorphins: possible role in reward and memory formation". *Federation Proceedings* 38.11 (1979): 2468-2472.
- 155. Wiss DA., et al. "Food addiction and psychosocial adversity: biological embedding, contextual factors, and public health implications". *Nutrients* 12.11 (2020): 3521.
- 156. Hill JO., et al. "Neurocognition: the food-brain connection". Advances in Nutrition 5.5 (2014): 544-546.
- 157. Blum K., *et al.* "Common neurogenetic diagnosis and meso-limbic manipulation of hypodopaminergic function in reward deficiency syndrome (RDS): Changing the recovery landscape". *Current Neuropharmacology* 15.1 (2017): 184-194.
- 158. Kotyuk E., et al. "Co-occurrences of substance use and other potentially addictive behaviors: Epidemiological results from the Psychological and Genetic Factors of the Addictive Behaviors (PGA) Study". *Journal of Behavioral Addictions* 9.2 (2020): 272-288.
- 159. Gold MS., *et al.* "A shared molecular and genetic basis for food and drug addiction: overcoming hypodopaminergic trait/state by incorporating dopamine agonistic therapy in psychiatry". *Psychiatric Clinics of North America* 38.3 (2015): 419-462.
- 160. Ram A., et al. "Bulimia nervosa and substance use disorder: similarities and differences". Eating Disorders 16.3 (2008): 224-240.
- 161. Mann AP., *et al.* "Factors associated with substance use in adolescents with eating disorders". *Journal of Adolescent Health* 55.2 (2014): 182-187.
- 162. Jordan J., et al. "Anxiety and psychoactive substance use disorder comorbidity in anorexia nervosa or depression". *International Journal of Eating Disorders* 34.2 (2003): 211-219.
- 163. Thanos PK., et al. "Bromocriptine increased operant responding for high fat food but decreased chow intake in both obesity-prone and resistant rats". Behavioural Brain Research 217.1 (2011): 165-170.
- 164. Thanos PK., *et al.* "Obesity-resistant S5B rats showed greater cocaine conditioned place preference than the obesity-prone OM rats". *Physiology and Behavior* 101.5 (2010): 713-718.
- 165. Tomasi D., et al. "Association of body mass and brain activation during gastric distention: implications for obesity". PLoS One 4.8 (2009): e6847.
- 166. Wang GJ., et al. "Imaging of brain dopamine pathways: implications for understanding obesity". Journal of Addiction Medicine 3.1 (2009): 8-18.

- 167. Davis LM., et al. "Bromocriptine administration reduces hyperphagia and adiposity and differentially affects dopamine D2 receptor and transporter binding in leptin-receptor-deficient Zucker rats and rats with diet-induced obesity". *Neuroendocrinology* 89.2 (2009): 152-162.
- 168. Wang GJ., et al. "Evidence of gender differences in the ability to inhibit brain activation elicited by food stimulation". Proceedings of the National Academy of Sciences of the United States of America 106.4 (2009): 1249-1254.
- 169. Volkow ND., et al. "Inverse association between BMI and prefrontal metabolic activity in healthy adults". Obesity (Silver Spring) 17.1 (2009): 60-65.
- 170. Volkow ND., et al. "Overlapping neuronal circuits in addiction and obesity: evidence of systems pathology". *Philosophical Transactions of the Royal Society B: Biological Sciences* 363.1507 (2008): 3191-3200.
- 171. Volkow ND., *et al.* "Low dopamine striatal D2 receptors are associated with prefrontal metabolism in obese subjects: possible contributing factors". *Neuroimage* 42.4 (2008): 1537-1543.
- 172. Thanos PK., et al. "Leptin receptor deficiency is associated with upregulation of cannabinoid 1 receptors in limbic brain regions". Synapse 62.9 (2008): 637-642.
- 173. Thanos PK., et al. "Differences in response to food stimuli in a rat model of obesity: in-vivo assessment of brain glucose metabolism". International Journal of Obesity (London) 32.7 (2008): 1171-1179.
- 174. Thanos PK., et al. "The effects of two highly selective dopamine D3 receptor antagonists (SB-277011A and NGB-2904) on food self-administration in a rodent model of obesity". Pharmacology Biochemistry and Behavior 89.4 (2008): 499-507.
- 175. Thanos PK., *et al.* "Food restriction markedly increases dopamine D2 receptor (D2R) in a rat model of obesity as assessed with *in-vivo* muPET imaging ([11C] raclopride) and *in-vitro* ([3H] spiperone) autoradiography". *Synapse* 62.1 (2008): 50-61.
- 176. Wang GJ., et al. "Gastric stimulation in obese subjects activates the hippocampus and other regions involved in brain reward circuitry". *Proceedings of the National Academy of Sciences of the United States of America* 103.42 (2006): 15641-15645.
- 177. Wang GJ., *et al.* "Similarity between obesity and drug addiction as assessed by neurofunctional imaging: a concept review". *Journal of Addictive Diseases* 23.3 (2004): 39-53.
- 178. Wang GJ., et al. "Exposure to appetitive food stimuli markedly activates the human brain". Neuroimage 21.4 (2004): 1790-1797.
- 179. Wang GJ., *et al.* "The role of dopamine in motivation for food in humans: implications for obesity". *Expert Opinion on Therapeutic Targets* 6.5 (2002): 601-609.
- 180. Wang GJ., et al. "Enhanced resting activity of the oral somatosensory cortex in obese subjects". Neuroreport 13.9 (2002): 1151-1155.
- 181. Volkow ND., *et al.* "Reward, dopamine and the control of food intake: implications for obesity". *Trends in Cognitive Sciences* 15.1 (2011): 37-46.
- 182. Wang GJ., et al. "Enhanced striatal dopamine release during food stimulation in binge eating disorder". Obesity (Silver Spring) 19.8 (2011): 1601-1608.
- 183. Michaelides M., et al. "PET imaging predicts future body weight and cocaine preference". Neuroimage 59.2 (2012): 1508-1513.
- 184. Michaelides M., et al. "Translational neuroimaging in drug addiction and obesity". ILAR Journal 53.1 (2012): 59-68.

- 185. Michaelides M., et al. "Dopamine-related frontostriatal abnormalities in obesity and binge-eating disorder: emerging evidence for developmental psychopathology". *International Review of Psychiatry* 24.3 (2012): 211-218.
- 186. Thanos PK., et al. "Gastric bypass increases ethanol and water consumption in diet-induced obese rats". Obesity Surgery 22.12 (2012): 1884-1892.
- 187. Volkow ND., et al. "Obesity and addiction: neurobiological overlaps". Obesity Reviews 14.1 (2013): 2-18.
- 188. Thanos PK., *et al.* "Obese rats with deficient leptin signaling exhibit heightened sensitivity to olfactory food cues". *Synapse* 67.4 (2013): 171-178.
- 189. Volkow ND., et al. "The addictive dimensionality of obesity". Biological Psychiatry 73.9 (2013): 811-818.
- 190. Wang GJ., et al. "Effect of combined naltrexone and bupropion therapy on the brain's reactivity to food cues". *International Journal of Obesity (London)* 38.5 (2014): 682-688.
- 191. Tomasi D., *et al.* "Overlapping patterns of brain activation to food and cocaine cues in cocaine abusers: association to striatal D2/D3 receptors". *Human Brain Mapping* 36.1 (2015): 120-136.
- 192. Zhang Y., et al. "Recovery of brain structural abnormalities in morbidly obese patients after bariatric surgery". *International Journal of Obesity (London)* 40.10 (2016): 1558-1565.
- 193. Thanos PK., et al. "Roux-en-Y gastric bypass alters brain activity in regions that underlie reward and taste perception". PLoS One 10.6 (2015): e0125570.
- 194. Thanos PK., *et al.* "Dopamine D2 gene expression interacts with environmental enrichment to impact lifespan and behavior". *Oncotarget* 7.15 (2016): 19111-19123.
- 195. Liu YY., et al. "Dopamine is involved in food-anticipatory activity in mice". Journal of Biological Rhythms 27.5 (2012): 398-409.
- 196. Stice E., et al. "Weight gain is associated with reduced striatal response to palatable food". Journal of Neuroscience 30.39 (2010): 13105-13109.
- 197. Stice E and Yokum S. "Brain reward region responsivity of adolescents with and without parental substance use disorders". *Psychology of Addictive Behaviors* 28.3 (2014): 805-815.
- 198. Carpenter CL., *et al.* "Association of dopamine D2 receptor and leptin receptor genes with clinically severe obesity". *Obesity (Silver Spring)* 21.9 (2013): E467-E473.
- 199. Wright KN., et al. "Methyl supplementation attenuates cocaine-seeking behaviors and cocaine-induced c-Fos activation in a DNA methylation-dependent manner". *Journal of Neuroscience* 35.23 (2015): 8948-8958.
- 200. Badgaiyan RD., et al. "Attenuated tonic and enhanced phasic release of dopamine in attention deficit hyperactivity disorder". PLoS One 10.9 (2015): e0137326.
- 201. Schulte EM., *et al.* "Which foods may be addictive? The roles of processing, fat content, and glycemic load". *PLoS One* 10.2 (2015): e0117959.
- 202. Wiss DA., et al. "Preclinical evidence for the addiction potential of highly palatable foods: Current developments related to maternal influence". Appetite 115 (2017): 19-27.
- 203. Ambros V. "The functions of animal microRNAs". Nature 431.7006 (2004): 350-355.

- 204. Syvälahti EK., et al. "Striatal D(2) dopamine receptor density and psychotic symptoms in schizophrenia: a longitudinal study". Schizophrenia Research 43.2-3 (2000): 159-161.
- 205. Blum K., *et al.* "Increased prevalence of the Taq I A1 allele of the dopamine receptor gene (DRD2) in obesity with comorbid substance use disorder: a preliminary report". *Pharmacogenetics* 6.4 (1996): 297-305.
- 206. Febo M., *et al.* "Enhanced functional connectivity and volume between cognitive and reward centers of naïve rodent brain produced by pro-dopaminergic agent KB220Z". *PLoS ONE* 12.4 (2017): e0174774.
- 207. Fried L., et al. "Hypodopaminergia and "precision behavioral management" (PBM): It is a generational family affair". Current Pharmaceutical Biotechnology 21.6 (2020): 528-541.
- 208. Blum K., *et al.* "Biotechnical development of genetic addiction risk score (GARS) and selective evidence for inclusion of polymorphic allelic risk in substance use disorder (SUD)". *Journal of Systems and Integrative Neuroscience* 6.2 (2020).

Volume 17 Issue 11 November 2025 ©All rights reserved by Kenenth Blum., *et al.*