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Topological Features are More Critical than Radiomics 
Features for Texture Analysis
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Radiomics is a technique for extracting quantitative features from medical images and analyzing them to make predictions. For ma-
lignancy and survival analysis, genomic expression analysis, cancer progression, and assessment, radiomics is widely used. However, 
radiomics does not obtain information about connected components, loops, or voids from a region of interest. Although Topological data 
analysis uses persistent homology to generate multiscale features from an image, we introduce a newer approach here. Topological fea-
tures, we believe, can be more valuable than radiomics features for texture analysis. Before moving ahead, we provide a small picture of 
radiomics and Topological data analysis. Advancement in high-throughput computing has aided the development of radiomics, an emerg-
ing field in medicine. Radiomics is a strategy to derive quantitative features from the MRI scans for clinical, diagnostic, and predictive anal-
ysis. Radiomics features can be categorized into three major groups: shape (e.g., volume, surface area, etc.), intensity (e.g., energy, entropy, 
etc.), and texture features (e.g., run-length features, gray level co-occurrence matrix,etc.). Texture features, which describe statistical 
relationships between voxels with distinct contrast values, are frequently used as primary quantitative features in radiomics. Radiomics 
features were using successfully for analyzing different clinical investigations [1-5]. However, topological data analysis is a relatively new 
concept in applied mathematics that aims to characterize shapes in massive quantities of data. Persistent homology is the most common 
method for analyzing topological data, and it has been used in a variety of fields (including chemistry, engineering, astronomy, biology, and 
medicine) [6-9]. TDA’s ability to identify shapes despite certain deformations in space makes it noise-resistant. It leads to the discovery of 
data properties that are not discernible by traditional data analysis methods. A point cloud is used as the input data for the computation 
of persistent homology. The primary focus of Topological Data Analysis (TDA) in this area is the development of methods to accelerate the 
computation of Persistent Homology. The output is a set of real number pairs (birth and death times) that document the spatial resolu-
tions at which each topological feature first appears (birth) and disappears (death) (death). The pairs are usually represented as a set 
of lines, known as barcodes, points in a 2D plane, a persistence diagram, or a persistent landscape. Informally, persistent homology is a 
method for topological computing features of a data set (point cloud) at various spatial resolutions. It captures topology evolution with 
increasing (or decreasing) resolutions, providing a multiscale view of a space’s topology.

Radiomics features from medical images have been successfully used to noninvasively analyze various types of cancer and clinical 
data. Radiomics features, on the other hand, can vary significantly depending on noise and other clinical parameters. there is a need for 
more powerful and meaningful features that can be used in conjunction with the radiomics features. On the other hand, TDA presents 
a systematic approach for noninvasively extracting potentially significant topological / geometrical features from data while ensuring 
stability against noise and metric choice. After reviewing the literature, we believe that topological features would be more beneficial for 
texture analysis than radiomics features. Combining topological and radiomics features for research will also be interesting. In conclusion, 
this report proposed a method for demonstrating that topological features are more critical for textural analysis than radiomics features.
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