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N-methyl D-aspartate (NMDA) receptors are an important topic that has been mentioned frequently in neurology in recent years, and 
a number of articles in this journal have dealt with this topic even in the last few years only [1-6].

NMDA receptors are a type of ionotropic glutamate receptors consisting with 4 subunits [7]. NMDA receptors have several properties 
not found in other glutamate receptors. They require small amounts of glycine or D-serine as coagonist and have attachment sites for 
modifying agents such as Zn2+, phencyclidine (PCP) and polyamine, but the most distinctive and important feature is that they have low 
excitability due to channel blockade with Mg2+ at rest, whereas when activated they have considerable permeability to Ca2+. These two 
properties make NMDA receptors a kind of yes/no decision maker for the neuron. The intracellular fluids of cells including neurons in 
the resting state are almost Ca2+-free, and the influx of Ca2+ works as a signal for the initiation of cell-specific activities. Endocrine cells 
secrete endocrine, muscles contract and synaptic terminals of neurons secrete transmitters. NMDA receptors also work in the generation 
of neural oscillatory rhythms, such as swimming or walking [8].

When the membrane is hyperpolarised and NMDA receptor activated by glutamate (and glycine or D-serine), Mg2+ in the extracellular 
fluid tries to move into the neuron via the NMDA channel, but unlike Ca2+ it cannot pass the channel and blocks the passage of other cat-
ions. If the membrane potential is sufficiently depolarized, Mg2+ is removed and other cations including Ca2+ begin to pass the channel. So, 
the voltage current relationship of open NMDA receptor channel show negative inclination portion between about -80 mV and -30 mV 
of the membrane potential. . This apparent negative resistance makes the NMDA receptor an active element for the electrophysiological 
behaviour of the neuron, in the same way that magnetrons and tunnel diodes act as active elements with negative resistance in amplifiers, 
oscillators and memory elements in electronic circuits. (Fig. 1A, 1B).

When NMDA receptors are activated in the presence of glutamate and glycine or D-serine, positive feedback acts on the negative resis-
tance area, causing the membrane potential to become unstable and to settle into two relatively stable states: a hyperpolarising region of 
around -70 mV and a depolarising region of around -40 mV. These two metastable states can be regarded as ‘0’ or ‘No’ for hyperpolarisa-
tion and ‘1’ or ‘Yes’ for depolarisation, and at the depolarisation side, switch becomes ‘On’ by the influx of Ca2+ through the NMDA channel 
to the events that follow. Fig. 1C and 1D shows schematically a response of a neurone to synaptic glutamate input with and without NMDA 
receptors and a typical pattern of NMDA receptor mediated bursting responses.

Some people emphasis the role of the NMDA receptor as a coincidence detector [9]. The coexistence of depolarisation and glutama-
tergic stimulation is a prerequisite for the activation of NMDA receptors, which then act as an AND circuit, which is important for the 
establishment of LTP and LDP. The timing of the input, called spike-timing-dependent plasticity (STDP), is thought to be important in 
determining whether LTP or LTD occurs, and various mechanisms have been proposed [10]. The model in which NMDA receptors alone 
can induce both LTP and LTD was proposed [10], and remains an interesting subject of research today [11].
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NMDA receptors play an important role in determining the fate of neurons and functional changes in the brain. During neonatal brain 
development, NMDA receptors are known to be strongly involved in spontaneous neural network activities called giant depolarization 
potentials (GDPs) in vitro or sharp waves (SPWs) in vivo, together with paradoxically excitatory GABA receptors, which play an important 
role in the establishment of neural networks [12]. NMDA receptors have also been shown to contribute strongly in the critical period of 
ocular dominance [13]. It is also known that NMDA receptors is involved in the induction or prevention of neuronal apoptosis depending 
on the site of NMDA receptors [14].

Since NMDA receptors play a crucial role in brain function, their malfunction can cause many types of neurological disorders including 
Alzheimer’s disease, Huntington’s disease, Parkinson’s disease [15,16], Schizophrenia [17] and notably Anti-NMDA receptor encephalitis 
[2,3,6].

Figure 1: NMDA receptors as active circuit element having negative resistance property.
Negative resistance refers to the negative slope of the VI curve in certain active devices, most famously in tunnel diodes (A).  

The negative resistance of NMDA receptors is achieved by Mg2+ blockage on the hyperpolarised side (B). This negative resistance  
boosts the stimulated depolarisation response in the presence of NMDA receptors, leading to an increase in the response, especially  

in its duration (C). Sustained burst responses in vivo and in vitro also involve NMDA receptors, which exhibit a bistable state, switching  
on and off across the negative resistance zone (D).
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