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Abstract

COVID-19 patients worldwide are conveniently described by position in-formation to collect samples, and modern GIS maps are 
useful to show influenced flows and numbers of patients on various regions of a pandemic. From an analysis viewpoint, it is more 
interesting to organize genomic information into a phylogenic tree with multiple branches and leaves in representations. Clusters of 
genomes are organized as phylogenic trees to represent intrinsic information of genomes. How-ever, there are structural difficulties 
in projecting phylogenetic information into 2D distributions as GIS maps naturally.

Considering advanced generating schemes of phylogenetic trees, information entropy provides ultra optimal properties in the 
minimum computational complexity, superior flexibility, better stability, improved reliability and higher quality on global construc-
tions. This super technology may play a key role in future development of advanced neurology, neuroscience and brain researches.

In this paper, a novel projection is proposed to arrange SARS-CoV-2 genomes by genomic indexes to make a structural organiza-
tion as 2D GIS maps. For any genome, there is a unique invariant under certain conditions to provide an absolute position on a spe-
cific region. In this hierarchical framework, it is possible to use a visual tool to represent any selected region for clustering genomes 
on refined effects. Applied diversity measure to a given set of genomes, equivalent clusters and complementary visual effects are 
provided between genomic index maps and phylogenetic trees. Sample genomes of three UK new lineages are aligned by BLAST as a 
basis on both RNA-dependent RNA polymerase RDRP segments and whole genomes. Selected regions and various projections show 
spread effects of five thousand SARS-CoV-2 genomes in 72 countries on both RDRP and whole genomes, and six special countries/
regions are selected on genomic index maps.

Based on genomic index maps, one SNV of two genomes on B.1.1.7 lineage can be identified from a unit of 10-4 probability mea-
sure to a unit  of 10-6 difference for genomic indexes on a special ‘G’ projection to extract the finest variation.

Further exploration on optimal classification and phylogenetic analysis of genomic index maps and phylogenetic trees on SARS-
CoV-2 genomes worldwide are dis-cussed.
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Introduction

The outbreak of SARS-CoV-2 caused COVID-19 to start in Dec. 2019 and is now pandemic. To the date of 26 January 2021, there are 
more than 100 million con-firmed cases and 2.15 million deaths worldwide. An understanding of the prevalence and contagiousness of 
the disease and of whether the strategies used to contain it to date have been successful is important for understanding future contain-
ment strategies.

One excellent strategy for containment of SARS-CoV-2 is to collect sample genomes globally into the GISAID genetic database [1] for in-
fected viruses. Based on this effective activity, Next strain provides Phylogenetic tree [2] to organize sample datasets from different places 
to categorize them as clusters under the maximal likelihood relationship to view intrinsic variations among SARS-CoV-2 genomes. Based 
on phylogenetic information, a dynamic simulation system provides flexible illustrations on selected branches [4] to support medical doc-
tors, virological experts, biomedical specialists and psychologic doctors for detailed treatments on COVID-19 patients.

Advanced researches in phylogenetic analysis

The NCBI developed Basic Local Alignment Search Tool BLAST [3] in 1990s to provide powerful software tools for generating phyloge-
netic trees under a list of optimal inference conditions [6-28]: maximum likelihood [6,7,23], probability [8], Bayers [9], stochastic search 
[10], unalignable sequences [11], best fit model [12], tradition and Bayers [13], reconstruction [14], multiple alternative phylogenies [15], 
phylogenetic diversity measures [16], entropy approach [17], Shannon entropy and mutual information [18], viral phylogenomics [19], 
phylogenetic tree building [20], IQ-TREE [21], neural network and deep learning classifier [28].

Viral phylogenetic using an alignment-free method [19] provide optimal length of k-mer on N genomes of a phylogenetic tree to have 
computational complexity applying cumulative relative entropy and Shannon entropy on O(N), significantly faster than minimum likeli-
hood or Bayers alignment on O(N2).

Useful technologies to build phylogenetic trees are viewed in [20]. Special problems in data collection of the world for SARS-CoV-2 are 
discussed. The key difficulties of phylogenetic analysis of SARS-CoV-2 are described in [22]. On wider researches on SARS-CoV-2 of phy-
logenetic analysis, a list of researches are carried out: phylogenetic supertree [24], informative subtype marker ISM [25], CG dinucleotide 
[26], CpG deficiency [27], classification and geographical analysis, light-weight classifier [28] and phylogenetic structure, S protein and 
stability [29].

In [25], informative subtype marker ISM applied entropy analysis and ISM ex-traction to simulate Next strain through GISAID clades of 
SARS-CoV-2 genomes in details. In this scheme, key positions of relevant open reader frames ORFs associated with probability measures 
on time variations to describe viral evolutionary information from historic datasets.

For N number of unique sequences, L width of alignment, a size of alphabet, three executable complexity as follows.

Scheme Complexity Description
Minimum likelihood O(N2 L a)

Bayers alignment Common optimal schemes
Fasttree O(N1:25 log(N) L a) Next strain’s phylogenetic trees

Information entropy O(N L a) Fastest optimal scheme
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Limitations of phylogenetic representations

Further arrangement may not be a direct approach. Regular zoom operators in GIS could be simulated along deeper or upper move-
ment along branching nodes in a phylogenetic tree. Since phylogenetic trees correspond to neither 1D nor 2D structures, it is difficult to 
rearrange various subtrees [24] as visual objects. Using BLAST or MEGA packages, expensive computational complexity may be required 
to process N genomes to handle a set of phylogenetic trees.

In general, effective projections for a subset of phylogenetic trees provide a natural projection, and other forms of visual representa-
tions could not be directly supported.

Phylogenetic trees in Nextstrain

The phylogenetic tree of Nextstrain is based on the maximal likelihood relationship to organize genomic datasets as hierarchical clus-
ters under differential information. After a sample genome of SARS-CoV-2 compared with root node and following branch nodes recur-
sively, it is possible to push it into the most likelihood node that contains the most similar genomes to be a target group. Since a genome 
contains a long sequence, there are multiple relationships among various clusters in the phylogenetic tree shown in figure 1. Using GIS 
maps, it is useful to see various genomes distributed worldwide.

Figure 1: The phylogenetic tree of real cases over global on Next strain.

Difficulties in phylogenetic analysis of SARS-CoV-2 data

A list of difficulties are discussed in [22], phylogenetic analysis of SARS-CoV-2 data is challenging due to numeric difficulties and the 
rugged likelihood surface.

Larger taxa on a low number of distinct site patterns have large topologic variability.

Signal is weak, it is difficult for standard phylogenetic significant tests. Bayersian tree interferences use a plausible tree set for comput-
ing summary statistics on trees.

Since old phylogenetic trees were generated from original genomes, there may not contain invariant structures to support new varia-
tions and mutations emergent from larger numbers of genomes everywhere.

In general, huge number of new genomes collected over the world makes ex-tensive structural difficulties to use phylogenetic trees 
constructed for update and extensions.
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Combination, matrix and thermodynamics

In modern mathematics and physics, there are many theoretical constructions to handle invariant and variation problems for entropy 
issues [31-51] such as combinatorial mathematics, combinatorial theory, combinatorics, multiple variable complex theory, statistical 
physics, thermodynamics, thermostatistics, statistical mechanics.

Neurology, neuroscience and brain science

The foundations of advanced brain sciences are strongly related to modern scientific research developments on modern neurology 
and neurosciences [53-63].

Hierarchy of visual cells

Visual receptors and retinal interaction opened new ways to explore neural signals on different visual disorders and frog eyes in de-
tails. Three levels of hierarchy are developed on simple, complex and hypercomplex cells of multiple neural network functionals [64-67].

Imaging and reconstruction on cellular level

Following cellular dynamics, powerful microscope tools are developed from gastrulation to early organogenesis at the cellular level. 
Microscopy and computational methods are explored. Multiple visual attentions are developed [68-75]. Memory process on cell levels 
were developed [76-80].

AI problems, sensor technologies and computational theory

Various hard problems in AI were discussed [81-85]. Multiple sensors and neuron-dynamics were investigated [86-92]. Computational 
theory of cognition were proposed [93-97].

Integrated information theory and natural intelligence

Integrated information theory is an advanced theoretical construction developed to share five basic properties: existing, composition, 
informative, integration, exclusion [98-103].

Further developments were focused on multiple entropy schemes [104-107] and natural intelligence NI approaches with biological 
neural network BNN and minimum free energy MFE [108].

Variant construction

In this direction, vectors, matrices and invariant measurements are described relevant to wider applications [109-112] on variant con-
struction [113-116].

The genomic index provides unique identification for each genome to be an in-variant under given conditions. Based on these types 
of global quantitative characteristics, it is convenient for large numbers of genomes to be located in a certain geometric region to be col-
lected as clusters.

Different entropy quantities were discussed in separate papers: Visualization of SARS-CoV-2 Genomes on Genomic Index Maps [117], 
Visualizations of Topological Entropy on SARS-CoV-2 Genomes in Multiple Regions [118], Visual Variations between Pairs of SARS-CoV-2 
Genomes on Integrated Density Matrix [119], Visualizations of Combinatorial Entropy Index on Whole SARS-CoV-2 Genomes [120].

Considering this is an extremely important research direction, it is necessary to handle this topic from a foundation level to provide 
additional information to explore hidden structures among this type of multiple levels of hierarchical constructions from a visual repre-
sentation viewpoint.
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Materials and Methods

Input on four meta symbols

For genomes, each element of input sequences is composed of four meta symbols states SS: {∅; A;C; G; T}.

The first order of combinations

From a combinatorial viewpoint, the first order of combinations from the four symbols is composed of sixteen states as a lattice of 
hierarchy, as shown in figure 2.

Figure 2: Sixteen combinations of four meta-symbols in a hierarchy of a lattice.

The sixteen states SS = {0/; A;C; G; T; AC; AG; AT; CG; CT; GT; CGT; AGT; ACT; ACG; ACGT} can be mapped into the sixteen numbers SI = 
{0; 1; 2; … ; 15} to rep-resent a 1D linear structure with 16 distinct positions. For a segment of a genome with m elements, there are four 
meta measures: {mA; mC; mG; mT} = {m1; m2; m3; m4} and sixteen combinatorial measures: {mi}; 0 ≤ i ≤ 15 to correspond a meta measuring 
vector with four elements and a combinatorial measuring vector with sixteen elements, respectively.

Multiple probability measures

When a genome contains m elements, the numbers of four Meta symbols can be counted. Let ms; s ∈ SS be a number of symbols s and 
ps be a probability measure. We have the following equations for multiple probability measures:

Under multiple probability conditions, there are sixteen distinct probability measures {pi}15
i=0; 0 ≤ pi ≤ 1, I ∈ SI respectively.

Two workflows from input to output

Two workflows (1) and (2) can be identified by the type of output:
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Genomic index projection and genomic index map

Three workflows are described in three parts as input, output and process.

In Step (1), one index of 16 Combinatorial Entropies can be generated.

Combinatorial entropy measurement

Let a vector Z with (m + 1) elements, Z = (Z0; Z1; … ; Zj; ; Zm); 0 ≤ Zj ≤ M and M=∑m
j=0Zj. Under this condition, let Pj=Zj/M be the j-th prob-

ability measurement, and a relevant information entropy eZ can be determined and restricted in a [0; log2(m + 1)] region:

For sixteen combinations of the first order, sixteen entropy measurements of eZ correspond to {eZi},0 ≤ i ≤ 15.

2D combinatorial entropies

Extending this construction to higher orders, the second order of combinations are composed of 2D 16 16 pairs of states or a 2D square 
with 256 positions.

Under this condition for a segment with m elements on a genome Z with N = m x M elements, sixteen entropies {eZi},0 ≤ i ≤ 15, ZEi ∈ 
[0; log2(m + 1)] are determined:

A pair of indexes corresponds to: eZi,j = (eZi, eZj); 0 ≤ i,j ≤ 15. There are a total of 256 pairs of 2D positions determined by the genome 
Z in the square on the [0; log2(m + 1)] [0; log2(m + 1)] region.

In Step (2) a genomic index map can be generated from multiple sets of sixteen indexes.
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Each EZi; j represents an index map corresponding to a [0; log2(m + 1)] [0; log2(m + 1)] region.

Genomic index maps

Different from a genome, it has a relative position in a phylogenic tree on the maxi-mal likelihood relationship. A genomic index is an 
absolute invariant to correspond a genome into a quantitative measurement under information entropy based on variant construction. 
Visual representations of multiple projections are illustrated.

Diversity measures between BLAST phylogenetics and genomic index maps

Differences between phylogenetic trees on given levels and whole genomes on genomic index maps can be systematically measured by 
diversity measure for N genomes. In [16], a list of phylogenetic diversity measures are discussed on phylogenetic trees. Using information 
theory, this type of diversity measures is restricted in [0; log2 N].

Multiple genomes

For multiple genomes {Zt}; 1 ≤ t ≤ T on maximal T members of each (i; j) projection, a total number of T positions can be collected 
on 2D square of ∀(eZi

t ; eZt
j); 1 ≤ t ≤ T. This provides a special distribution for whole genomes of T members on (i; j) projection based on 

combinatorial entropy measurements.

For a selected segment R such as an ORF area, if all R segments of N genomes are transferred as a genomic index map with at most 
M distinguished positions 1 M N (or a certain level of a relevant phylogenetic tree with M branches), let ER(N) be a diversity entropy of 
genomic index maps on R areas, then the diversity measure is defined as

                                                                                                           ER(N) = log2(M)               (3)

Difference and error margin

For two genomes Z1; Z2, let s; s ∈ SS be a projection on s direction, and a difference ∆ (eZs(Z1); eZs(Z2)) of two genomic indexes is

Let ∆e be a given error margin, e.g. ∆e = 0:001. If ∆ (eZs(Z1); eZs(Z2)) > De is true, then two genomes can be distinguished in a genomic 
index map. Otherwise, two genomes cannot be separated in a cluster on the genomic index map.

If all R segments of N genomes contain in the same content as the same genomic index, then there is ER(N) = log2(1) = 0 to be the mini-
malist diversity measure for the system configuration. However, if all N genomic indexes of R segments can be distinguished without any 
equal genomic index, then there is ER(N) = log2(N) to be the maximalist diversity measure for the R segments.

Equivalent condition between phylogenetic trees and genomic index maps

From diversity measures for N genomes, there is a natural correspondence via equivalent diversity measures between clusters of a 
certain level of a phylogenetic subtree and an enlarged region of a genomic index map in general.
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Datasets

From a collection of more than 30K genomes from the GISAID genetic database before July 2020, more than 5K genomes were selected 
without any uncertain element of ‘N’ in whole sequences. Approximately 25K genomes contain at least one ‘N’. There are 72 countries 
involved that contain more than one genome.

Based on COG-UK’s report of SARS-CoV-2 spike mutations [30], three groups of datasets on UK new variations {B.1.1.7, B.1.177, 
B.1.258} are selected, and each group contains 10 genomes.

Selecting a total of 5336 genomes, both RNA-dependent RNA polymerase RDRP and whole genomes are involved for further analysis 
in corresponding genomic index maps.

RDRP and S protein alignments, and phylogenetic trees

Three selected datasets of 30 variation genomes and their processed results from BLAST are shown in figure 3a-3c. Two phylogenetic 
trees for three groups are constructed by BLAST using neighbor-joining (NJ) for DNA on maximal likelihood (ML) shown in figure 3a. 
Three groups are separated as three branches. Variations on RDRP are listed in figure 3b and variations on S protein are listed in figure 3c.

Variations of BLAST on RDRP

From figure 3b, all variations of B.1.1.7 RDRP sequences have the same contents with {C ↔ T} exchanged positions, two positions with 
{A → C, C → T} are in B.1.177 sequences, and there are multiple variations on {C → A, G → A, C ↔ T,···} in B.1.258 respectively.

Variations of BLAST on S protein

From figure 3c, B.1.1.7 S protein sequences have at least five significant variations on {A → T, C → A, C → T, G → C}, B.1.177 sequences 
have multiple variations on {C → T, G → T, G → C} and B.1.258 sequences contain multiple variations on {C → A, C ↔ T, G → A} respectively.

a

b
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Visual tool-plotly

Plotly is a visual tool [52] of open-source visualization libraries for R, Python and JavaScript. In this project, we use this visual tool to 
illustrate hierarchical distributions for multiple genomes on selected regions of EZi; j maps.

Clustering on genomic index maps

Since all genomic indexes are associated with absolute invariants, this makes it possible to apply 1D or 2D distributions to represent 
complicated clusters for multiple genomes in hierarchical structures.

Two distinct schemes are shown in figure 4 for both the phylogenetic tree of Nextstrain and a global genomic index map on five thou-
sand genomes in 72 countries. Different colors are applied to distinguish relevant countries. Various clusters of genomes are clearly visu-
alized by distinct color points for relevant countries on the genomic index map. Refined maps are shown in the next section.

c

Figure 3a-3c: Three groups of variation genomes on BLAST (a) Selected genomes and two Phylogenetic trees  
(b) Variations in RDRP (c) Variations in S Protein.

Figure 4: The phylogenetic tree of real cases over global on Next strain and global genomic index map.
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Results

Relevant results are included in two separated files: 5306-RDRP16-A-G.html (for 30 + 5306 RDRP segments) and 5306-Whole16-A-G.
html (30 + 5306 Whole genomes) that can be visualized by an HTML browser in the newest version for Plotly libraries.

For RDRP sequences of five thousand genomes, a global genomic index map and various projection maps for three variations and six 
regions: {Australia, Chile, China, Taiwan, UK, USA} were selected to show relevant projections of results in figure 5a-5c and enlarged parts 
of selected regions are shown in figure 6a-6h. Two special projections are shown in figure 7a and 7b to illustrate six selected regions and 
three variation on RDRP.

Figure 5a-5c: Five thousands of RDRP genomes on genomic index maps (a) Global (b) Six selected regions: 
 Australia + Chile + China + Taiwan + UK + USA (c) An enlarged region selected from (b).

a

b

c
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Figure 6a-6h: FAn enlarged region of RDRP on genomic index maps with three groups of variations. (a) Six regions: Australia + Chile + 
China + Taiwan + UK + USA (b) Three groups: B.1.1.7 + B.1.177+B.1.258 (c) Australia (d) Chile (e) China (f) Taiwan (g) UK (h) USA.

a b

c d

e f

g h
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a

b

Figure 7a and 7b: Enlarged Region of RDRP genomes on genomic index maps (a) Six selected regions:  
Australia + Chile + China + Taiwan + UK + USA (b) Three variations.

For whole sequences of five thousand genomes, a global genomic index map and various projection maps for three variations and six 
regions: {Australia, Chile, China, Taiwan, UK, USA} were selected to show relevant projections of results in figure 8a-8c and enlarged parts 
of selected regions are shown in figure 9a-9h. Two special projections are shown in figure 10a and 10b to illustrate six selected regions 
and three variation on whole genomes.
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Figure 8a-8c Five thousands of whole genomes on genomic index maps (a) Global (b) Six selected regions:  
Australia + Chile + China + Taiwan + UK + USA (c) An enlarged region selected from (b).

a

b

c
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c d

e f

g h

Figure 9a-9h: An enlarged region of whole genomes on genomic index maps with three groups of varia-tions (a) Six regions: Australia + 
Chile + China + Taiwan + UK + USA (b) Three groups: B.1.1.7 + B.1.177+B.1.258 (c) Australia (d) Chile (e) China (f) Taiwan (g) UK (h) USA.

a b
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Figure 10a and 10b: Enlarged Region of whole genomes on genomic index maps (a) Six selected regions:  
Australia + Chile + China + Taiwan + UK + USA (b) Three variations.

a

15
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b

Figure 11a and 11b: Three variations of RDRP and whole genomes on genomic index maps (a) RDRP (b) Whole genomes.

a

b

Figure 12a and 12b: Three variations of RDRP and whole genomes on 100 times of  
enlarged genomic index maps (a) RDRP (b) Whole genomes.
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a

b

Figure 13a and 13b: Three variations and six selected regions of RDRP and whole genomes on  
genomic index maps (a) RDRP (b) Whole genomes.

Projections of three variations from RDRP to whole genomes are illustrated in figure 11a and 11b, 100 times of enlarged projections of 
ten B.1.1.7 genomes from RDRP to whole genomes are illustrated in figure 12a and 12b, and projections of six regions and three variations 
from RDRP to whole genomes are illustrated in figure 13a and 13b.

Discussion

Since there is an autoscale function in the Plotly package, visual regions for selected datasets may not be a fixed one with slight differ-
ences for each selected region.

Projections for RDRP

In figure 5a-5c, three genomic index maps are represented for all genomes of three variations, 72 countries and selected six regions: 
Australia, Chile, China, Taiwan, the UK and the USA.
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Initial maps for RDRP

In figure 5a, all genomic indexes of three variations and 72 countries are restricted to a region of A ∈ [2.70,2.95] × G ∈ [2.40,2.75], (∆A 
= 0.25, ∆G = 0.35) with an error margin ∆e=0.01 and multiple clusters could be identified by visual clustering technologies. The central 
point of this map is located on (A = 2.825, G = 2.675).

In figure 5b, all genomic indexes of three variations and six regions: Australia, Chile, China, Taiwan, the UK and the USA are selected in 
a region of [2.70, 2.95] × [2.43, 2.72], (∆A = 0.25, ∆G = 0.29) and a selected region of [2.75, 2.90] × [2.50, 2.65], (∆A = 0.25, ∆G = 0.15) with 
an error margin ∆e = 0.01.

In figure 5c, the selected region of figure 5b has expanded as a full frame restricted in the region of [2.75, 2.90] × [2.50, 2.65], (∆A = 0.25, 
∆G = 0.15). Three variations and six selected regions will be projected as further selection in an enlarged map.

Selected areas for RDRP

Eight maps are shown in figure 6a-6h in the region of [2.75, 2.90] × [2.50, 2.65], (∆A = 0.25, ∆G = 0.15).

In figure 6a, RDRP of three variations and six selected regions are illustrated. 

In figure 6b, RDRP of three variations are illustrated around the center part of the frame. There are three color points distinguished one 
in red (B.1.177), three (two connected) in green (B.1.258), and one in green is a common point to be shared with red (B.1.177) and blue 
(B.1.1.7) overlapped at the same position: (A = 2:824042; G = 2:569091). Three color points in a triangle can be restricted in a rectangle 
on [2:8236; 2:8277] [2:5687; 2:5756] of (∆A = 0:0041; ∆G = 0:0069) differences with an error margin ∆e = 0:0001.

In figure 6c, RDRP collected from Australia and three variations are illustrated. One pink point is covered on the same position of 
B.1.1.7, other pink points are located on the east and north-east direction far away from the three variations.

In figure 6d, RDRP collected from Chile and three variations are illustrated. One purple point is covered on the same position of B.1.1.7, 
other purple points are located on from the north, north-east, east to south-east directions far away from the three variations.

In figure 6e, RDRP collected from China and three variations are illustrated. One yellow point is covered on the same position of B.1.1.7, 
other yellow points are located on from north, north-east, east, south-east to south directions far away from the three variations.

In figure 6f, RDRP collected from Taiwan and three variations are illustrated. One green point is covered on the same position of B.1.1.7, 
other green points are located on from the north, north-east, east, south-east to south directions far away from the three variations.

In figure 6g, RDRP collected from the UK and three variations are illustrated. One light-blue point is covered on the same position of 
B.1.1.7, other light-blue points are located on from the north to north-east directions far away from the three variations.

In figure 6h, RDRP collected from the USA and three variations are illustrated. One blue point is covered on the same position of B.1.1.7, 
other blue points are located on from north-west, north, north-east, east, south-east to south directions far away from the three variations.

It is interesting to notice that at least one genome in each region has covered RDRP of B.1.1.7 on A-G projections.

Enlarged maps for RDRP

In figure 7a and 7b, two enlarged genomic index maps are represented for six regions and three variations on RDRP. Figure 7a is an 
enlarged map of figure 6a to show refined genomic indexes for the six regions selected. Figure 7b is an enlarged map of figure 6b to show 
refined genomic indexes for three variations. There is a clear triangle shape in the middle area of the map.
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Projections for whole genomes

In figure 8a-8h, eight genomic index maps are represented for all whole genomes of three variations, 72 countries and selected six 
regions: Australia, Chile, China, Taiwan, the UK and the USA.

Initial maps for whole genomes

In figure 8a, all genomic indexes of three variations and 72 countries are restricted to a region of A ∈ [2.93, 3.02] × G ∈ [2.62, 2.70], 
(∆A=0.09, ∆G=0.08) and multiple clusters could be identified by visual clustering technologies. The center of this map is located on (A = 
2:97; G = 2:66).

In figure 8b, all genomic indexes of three variations and six regions: Australia, Chile, China, Taiwan, the UK and the USA are selected in 
a region of [2:93; 3:02] x [2:62; 2:70]; (∆A = 0:09; ∆G = 0:08) and a selected region of [2:97; 3:01] x [2:64; 2:67], (∆A = 0:04; DG = 0:03).

In figure 8c, the selected region of figure 8b has expanded as a full frame restricted in the region of [2:97; 3:01] x [2:64; 2:67]; (∆A = 
0:04; ∆G = 0:03). Three variations and six selected regions will be projected as further selection in an enlarged map.

Selected areas for whole genomes

Eight maps are shown in figure 6a-6h in the region of [2:97; 3:01] x [2:64; 2:67]; (∆A = 0:04; ∆G = 0:03).

In figure 9a, whole genomes of three variations and six selected regions are illustrated. At least, three clusters in green (B.1.258) and 
blue (B.1.1.7) are located on the right-top and middle-bottom positions as two edge parts. A larger cluster with multiple color points is 
located on the left-bottom of the map.

In figure 9b, whole genomes of three variations are illustrated on the bottom and north-east parts of the map. There are three types 
of color points distinguished. One cluster in red (B.1.177) is located on left-bottom corner and a single one is located on the center far 
away from 1/2 map in a region of [2:9723; 2:9865] x [2:6442; 2:6563], (∆A = 0:0142; ∆G = 0:0121). Eight clusters in green (B.1.258) are 
located on left-bottom and right-top of the frame in diagonal directions in a region of [2:9716; 3:0024] x [2:6422; 2:6672], (∆A = 0:0308; 
∆G = 0:0250). And one cluster in blue (B.1.177) is located on middle-bottom part of the map in a region of [2:9861; 2:9869] x [2:6440; 
2:6451], (∆A = 0:0008; ∆G = 0:0006) with an error margin ∆e = 0:0001. Three variations are restricted in three areas with 18 ∼ 40 times 
respectively. For the most points compared with RDRP maps, each genomic index can be identified with less overlaps.

In figure 9c, whole genomes collected from Australia and three variations are illustrated. One pink point is located between two clus-
ters of B.1.177, other pink points are located on the right-top direction far away from the three variations.

In figure 9d, whole genomes collected from Chile and three variations are illustrated. Multiple purple points are located between clus-
ters of B.1.177 and B.1.1.7, other purple points are located on from the north-west, north, north-east to south-west directions far away 
from the three variations.

In figure 9e, whole genomes collected from China and three variations are illustrated. Multiple yellow points are located between clus-
ters of B.1.177 and B.1.1.7, other yellow points are located on from the north-west, north, north-east to south-west directions far away 
from the three variations.

In figure 9f, whole genomes collected from Taiwan and three variations are illustrated. Multiple green points are closed to clusters of 
B.1.258, B.1.177 and B.1.1.7, other green points are located on from the north-west, north, north-east to south-west directions far away 
from the three variations.
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In figure 9g whole genomes collected from the UK and three variations are illustrated. Multiple light-blue points are closed to clusters 
of B.1.177 and B.1.258, other light-blue points are separated from the north-west, north to south-west directions far away from the three 
variations.

In figure 9h, whole genomes collected from the USA and three variations are illustrated. Main cluster of blue points are located on 
B.1.177 and a few points are closed to B.1.1.7, other blue points are located mainly from the north-west, north, north-east, south-east, 
south to south-west directions far away from the three variations.

Enlarged maps for whole genomes

In figure 10a and 10b, two enlarged genomic index maps are represented for six regions and three variations on whole genomes. 
Figure 10a is an enlarged map of figure 10a to show refined genomic indexes for the six regions selected. Figure 10b is an enlarged map 
of figure 10b to show refined genomic indexes for three variations. It is interesting to see B.1.1.7 located as an edge cluster in the middle 
bottom of the map.

Projections from RDRP to whole genomes

Pair of genomic index maps for three variations from RDRP to whole genomes are compared in figure 11a and 11b. In figure 11a clus-
ters of 30 variations are expanded from a triangle shape in a smaller area of RDRP to at least seven clusters of whole genomes from east, 
south-east and south directions as brushes. For one point of B.1.1.7 on RDRP, a unique blue cluster of whole genomes was developed on 
the edge part of south-east direction. Ten genomes of B.1.1.7 could be separated under enlarged genomic index maps.

Ten genomes of B.1.1.7

Pair of genomic index maps for ten B.1.1.7 genomes from RDRP to whole genomes are compared in figure 12a and 12b. In figure 12a a 
single blue cluster of 10 genomes on (A = 2:824042; G = 2:569091) position is still as a point, even both vertical and horizontal axises have 
been magnified more than 100 times. Nine clusters of B.1.1.7 can be clearly observed under enlarged genomic index map in figure 12b. 
Only the second cluster on the west direction is composed of two separable points on (A = 2:986233; G = 2:644524) and (A = 2:986233; G 
= 2:644521) with (∆A = 0; ∆G = 0:000003) differences with an error margin ∆e = 0:000001 to show at least one G variation between the 
two whole genomes. Further 1000 times of enlarged operation can effectively separate two points on the vertical direction.

Verification on two SNVs of two whole genomes for B.1.1.7 lineage

Based on the 5336-Whole16-A-G.html package, it is convenient to identify the two genomes {England/CAMC-B7B454/2020, England/
MILK-B87ACC/2020} from enlarged genomic index maps on two visual screens. The two genomes are aligned by BLAST to extract the 
finest variations as follows.

For the two whole genomes, only two SNV sites can be identified different at 18252 and 25437 positions. Two SNVs of the England/
CAMC-B7B454/2020 genome contain two ‘T’ symbols, but two SNVs of the England/MILK-B87ACC/2020 genome change ‘T’ to ‘C’ and ‘G’ 
symbols respectively. The pair of differences on bi-pairs of genomic indexes is (∆T = 0:000234814; ∆G = 0:000003557).

From this pair of differences, the statement in previous section has been verified. There is merely one ‘G’ partial variation to be a SNV 
at the 25437 site from T → G shown in figure 12b.

Since a SARS-CoV-2 genome has 30K nucleotides, a unit of probability measure on its nucleotides is ∼O(10−4). In the above ‘G’ SNV 
projection, the unit of genomic indexes is DG = 0:000003557 ∼O(10-6) significantly enlarged visual maps at least 100 times than original 
region. Selected an error margin properly, different topologic configurations can be illustrated similar to separate distinct numbers of 
branches on given levels of a phylogenetic tree.
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5336 genomes

Pair of genomic index maps for 5306 genomes and three variations from RDRP to whole genomes are compared in figure 13a and 13b. 
In figure 13a, compact clusters of 5306 genomes and three variations on RDRP are developed mainly in the middle areas and two larger 
clusters in north-east and west directions. Compared with figure 11a, it is feasible to identify the three UK variation locations on the map 
as a reference.

In figure 13b, expanded clusters of 5306 genomes and three variations on whole genomes are distributed in the middle areas and at 
least four larger clusters are distributed in north-east and south-west directions. Compared with figure 11b, it is feasible to identify the 
three UK variation locations on the map as a reference, especially for the B.1.1.7 cluster.

Differences between RDRP and whole genomes in genomic index maps

The corresponding relationships of three variations are transformed from RDRP in figure 11a to whole genomes in figure 11b to il-
lustrate characteristic distributions with significantly visual diffusion.

For genomic index maps of whole genomes in figure 11b, B.1.1.7 retains one cluster, both B.1.177 and B.1.258 separated as three clus-
ters with larger distances more than 0:01 ∼ 0:1 differences among clusters on genomic index maps.

Since the 5306 genomes were collected before July 2020 from GISAID over the world, no B.1.1.7 variations were identified on this dataset.

From listed comparisons on genomic index maps, larger clusters have significant differences in the six selected regions shown in figure 
6a-6h and figure 9a-9h.

Different from RDRP maps at least one genome has covered B.1.1.7 position. In relation to whole genomes, there are only two regions 
(Taiwan, USA) contained a few genomes located nearby the B.1.1.7 cluster shown in figure 9f and 9h. Other four regions of selected whole 
genomes were far away from the B.1.1.7 cluster.

Larger clusters of whole genomes

For all 5336 genomes on RDRP, multiple clusters may have higher compacted degrees. Hundreds of distinguished color points can be 
identified in figure 13a. This density indicates at least 30 genomes with the same RDRP content may be mapped in one position.

For all 5336 genomes on whole genomes, different types of distributions were shown in figure 13b. More than 20 ∼ 50 larger clusters 
can be identified with multiple color points connected as distinguished areas, and many separated single points on the map. Thousands 
of distinguished color points could be visualized in figure 13b as larger connected areas. From a statistical viewpoint, each cluster could 
be distributed as Gaussian normal distributions with central symmetry. This type of clusters could collect huge number of genomes espe-
cially in central areas to be generated as multiple normal distributions of the statistical probability for larger number of whole genomes.

Optimal properties of BLAST results and genomic index maps

Significant differences between RDRP and whole genomes on genomic index maps can be systematically compared by diversity mea-
sures for N genomes. Using diversity measures, this type of diversity measures is restricted in [0; log2(N)].

Diversity measures between RDRP segments and whole genomes

Using BLAST operations, multiple RDRP segments are processed to make alignments one by one on selected N genomes.

Let ERDRP(N) be a diversity measure of genomic index maps on RDRP, and EWG(N) be a diversity measure of genomic index map on whole 
genomes.
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If all RDRP segments of N genomes contain in the same content being the same genomic index, then there is ERDRP(N) = log2(1) = 0 to 
provide the minimalist diversity measure for the system configuration. However, if all RDRP segments of N genomes can be distinguished 
without any equal genomic index, then there is ERDRP(N) = EW G(N) = log2(N) to provide the maximalist diversity measure for the system 
configuration.

In figure 12a and 12b, N = 10 only a single cluster of ten B.1.1.7 RDRP segments can be identified in figure 12a, and so the diversity 
measure of figure 12a is ERDRP(10) = 0. However, nine clusters of ten B.1.1.7 genomes are separated with an error margin ∆e = 0:00001 on 
(A; P) genomic index map in figure 12b and the diversity measure of figure 12b is EW G(10) = log2(9). If further enlargement has performed 
and an error margin ∆e 0:000001, then ten clusters can be distinguished and EW G(10) = log2(10).

Under those conditions, both the minimal and maximal borders of diversity measures can be obtained.

If no BLAST operations were performed to align RDRP segments, then the diversity measure satisfies ERDRP(N) > 0. It is extremely hard 
for anyone to obtain a better result if at least two distinguished genomes are selected from different countries over the world.

In general, N genomes collected from different places, a diversity measure on 0 < ERDRP(N) EW G(N) < log2(N) will be observed.

Due to this structural restriction, traditional BLAST operations provide a necessary condition for genomic index in system optimiza-
tion. Under BLAST supports, genomic index maps provide an optimal scheme in genomic analysis to visualize multiple genomes in one 
genomic index map.

Without BLAST operations, genomic index maps for multiple genomes cannot have the minimal configuration of the diversity measure 
systematically at all.

Optimal solution for multiple ORFs

Twenty nine ORFs are identified from SARS-CoV-2 genomes, in a natural condition, each ORF may bring some random variations. 
The local alignment can be effectively performed on one selected ORF. It is difficult to make alignment same time more than one ORFs in 
general.

It is necessary for multiple ORFs to make multiple alignments of relevant ORF first, aligned ORF segments can be processed in further 
calculation.

If each aligned ORF segment has transferred into a genomic index, multiple aligned ORF recombination will provide the minimal diver-
sity measures smaller than directly calculated from whole unalignable genomes.

From an optimal viewpoint, neither RDRP nor whole genomes provides an optimal solution to explore complex-inner structures of 
whole SARS-CoV-2 genomes. A better solution is to apply multiple ORFs of alignments separately to create an optimal solution of the di-
versity measure for future explorations.

Phylogenetic trees and genomic index maps

Using diversity measures, it is convenient for both phylogenetic trees and genomic index maps to be compared consistently. This mea-
surable mechanism is confirmed on the equivalent diversity measures between viral genomes under certain levels of a phylogenetic tree 
and various enlarged regions of genomic index maps.

In principle on any genomic index map, the enlarging operations can be repeatedly applied to selected regions to recursively detailed 
regions via a series of proper error margins e ∈ {1,0.1,0.01,···,0.0···01} from a rough gap to the finest margin respectively.

In the most conditions, if two genomic indexes are different, then two positions can be visually separated when a larger fold magnifica-
tion has been applied and proper error margin selected.
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In application levels, the diversity measure provides conveniently classified effects for medical doctors and researchers to treat CO-
VID-19 patients with similar genomic indexes as one group of genomes.

Conclusion

Using combinatorial entropy as 2D genomic index maps, there are 256 projections to support multiple genomes in representations. 
Various computational measurements are described to cover from local to global statistics properties. Richness of both phylogenetic trees 
and genomic index maps can be measured on diversity measures with equivalent effects.

Applying thirty genomes of UK new variations, and five thousand genomes of SARS-CoV-2 on 72 countries and special selections on 
six countries based on Plotly libraries, a list of genomic index maps selected for both RDRP segments and whole genomes are shown in 
significant different distributions on each country to illustrate complicated contagiousness patterns among various regions.

From the ten genomes of B.1.1.7 lineage, it is feasible to distinguish one SNV from genomic index maps, and different magnifications 
on selected areas to provide better effects of visualization on selected samples for the finest analysis under the minimum optimal condi-
tion. Diversity measures provide numeric quantities as clade information to be compared with both RDRP and whole genomes on the ten 
whole genomes of B.1.1.7 samples consistently.

It is a challenging task to generate optimal phylogenetic trees of SARS-CoV-2 genomes accurate with stability to support huge number 
of update genomes over the global, to make twenty nine ORFs such as {S protein, M, N, E} gradually in optimal conditions to simulate GI-
SAID clades and Nextstrain phylogenetic trees in higher stability under huge updates of mutations and variations of SARS-CoV-2 genomes 
worldwide.

Using genomic index maps, further refined classifications and categories of genomes could be visually and numerically explored, and 
this powerful optimal-measure tool would be useful in refined medical treatments for COVID-19 patients worldwide in near future.

From further requirements from neurology, neurosciences and brain research directions, the new construction provides the first evi-
dence to support integrated in-formation theory IIT and natural intelligence NI based on genomic index maps GIM as global invariants in 
hierarchy. It is an interesting topic to explore relevant correspondences and restrictions in proper complex neurons conditions. Further 
investigations are required.
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5336 genomes and genomic indexes on (A,G)

Two information files in two formats contain detailed information for each selected genome: (Genome Name, Location, Time, Type, Clade, 
..., Genomic Indexes on whole genome and RDRP).
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55306 genome information: 5306-Genome-Information.xlsx,  5306-Genome-Information.tsv

30 UK genome information: 30-UK-Genome-Information.xlsx,  30-UK-Genome-Information.tsv

Two executable packages

Two interactive visual packages: RDRP and whole genomes.

5336-RDRP-Genomes-16-A-G.html (30 + 5306 RDRP segments in 72 countries/regions).

5336-Whole-Genomes-16-A-G.html (30 + 5306 Whole genomes in 72 countries/regions).

Appendix

Follow the below links

30-UK-Genome-Information

5306-Genome-Information

30-UK-Genome-Information

5306-Genome-Information

5336-RDRP-Genomes-16-A-G

5336-Whole-Genomes-16-A-G
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