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Abstract
In neurological research, cognitive/behavioural evaluations typically has the traditional cognitive functions (e.g. working memory 

or spatial orientation) as the conceptual and methodological point of departure. However, such “functions” appear to be neither 
unitary nor homogenous (across individuals) - e.g. numerous cognitive tests can be demonstrated to be procedure-dependent. And 
additionally, there is growing evidence of unexpected individual differences and experience-dependency regarding traditional “func-
tions”. Thus, the traditional system of cognitive functions needs to be modified. Presently, it is argued that the adequate focus is the 
applied strategies rather than traditionally defined functions. This is argued with the Reorganization of Elementary Functions (REF) 
framework as the theoretical foundation. Furthermore, it is being discussed how best to approach the neurocognitive research pro-
cess with such a focus on strategies rather than functions. The use of already established “challenge” procedures is being referred 
to. Also, it is presented that novel computational methods are presently being developed towards even more detailed and unbiased 
analyses of behavioural/cognitive data as well as analyses of neural processes revealed by EEG/MEG.
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Addressing functions in neurological research

In neurological research - be it basic studies of neurocognitive organization or research addressing one or another therapeutic method 
- an important element is to evaluate the cognitive abilities and performance of the individual. Both in human studies and in animal based 
research this opens the question of how to evaluate such cognitive abilities. The point of departure will typically be a desire to evaluate 
how “intact” or impaired a given function is. For instance, one may want to evaluate whether a given training paradigm can improve the 
function working memory in stroke patients [1] or one may, in an animal model, want to evaluate whether prefrontal cortical lesions and 
hippocampal lesions are associated with equal or dissimilar levels of impairment of the function allocentric spatial orientation [2]. In case 
of working memory the choice of test would typically be one of the standard working memory tests - such as a digit span or n-back test 
[3]. Addressing allocentric spatial orientation in for instance a rodent one might focus on a water maze based test such as an allocentric 
place learning task [4].
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Applying such cognitive tasks in humans or animals may seem relatively straightforward: One is to follow the established procedures 
- especially regarding the “cognitively essential” aspects of those procedures. Unfortunately, the existing knowledge regarding such es-
sential factors may be too limited. For instance, it has been well established that in a Prism Adaptation Therapy (PAT) procedure, a crucial 
aspect is that the subject receives correct information/feedback regarding the actual position to which she/he was pointing - allowing 
that position to be compared to the goal position to which she/he was attempting to be pointing [5]. In a computer-based version of the 
procedure, however, it turned out that two different versions of such feedback gave radically different outcomes - in spite of both giving 
the position [6]. Returning to the initially mentioned tests of working memory, the n-back test has, for instance, been demonstrated to 
exhibit method dependence - procedural differences are associated with different patterns of neural activation [7]. Various “span” tasks 
(e.g. digit or word span) also exhibit different outcomes depending on procedural factors [8]. In general, the straightforward idea of a 
“working memory” with a limited capacity seems to be questioned by both such procedural effects and by experiments e.g. demonstrating 
that an increased working memory load (as opposed to a decrease in load of such a system) may be associated with a facilitated language 
production [9]. The pattern of method-dependency also holds for animal model based studies. For instance, in case of water maze based 
allocentric place learning tasks, both the neural and cognitive processes depend on the experimental setup [2,10-12]. The fact that appar-
ently similar versions of cognitive tasks may be associated with dissimilar outcomes at the neural and cognitive level is far from limited 
to these few examples [4,6].

The results described above (and others), point to the need for neurological testing to be supplemented with methods better able to 
capture the unexpected complexity of the neurocognitive situations. But those results also point to the need to replace or supplement the 
traditional theories of neurocognitive organization with models better able to capture those complexities.

The REF (Reorganization of Elementary Functions) framework

The above-described results as well as many others tend to disagree with the traditional “modular” models of organization [13-16]. 
But they also contradict the traditional versions of distributed connectionist network models [17-20] - for discussions of these contra-
dictions: see e.g. Mogensen and Overgaard [21,22]. They are, however, better understood within the REF (Reorganization of Elementary 
Functions) framework [21-29]. Not the least because the REF model and the REF framework in general emphasize strategies rather than 
traditional “functions” as an essential mechanism in neurocognitive organization [21,28]. For a recent review of the REF framework: see 
[21]. 

The REF model is based on three levels of analysis. Both the top and bottom layers represent types of “functions”. However, the way 
functions are conceptualized differ significantly between the two layers. The upper layer represents what is termed “surface phenom-
ena”. Such surface phenomena are all behavioural and/or mental manifestations (including conscious awareness). All normal as well as 
pathological behavioural/cognitive expressions are surface phenomena. If, for instance, a patient after suffering acquired brain injury 
demonstrates expressive aphasia (being unable to express herself/himself linguistically or having a pathologically changed language 
performance), those linguistic changes are all changed (or absent) surface phenomena. And in case of a subsequent functional recovery, 
the recovered expressive language is also a surface phenomenon. This means that it is also at the level of surface phenomena that we face 
the apparent contradiction between functional localization and posttraumatic functional recovery. If the linguistic surface phenomena 
are mediated by specific brain structures (as it is evident from both neuroimaging studies and the results of focal brain injury [30-41]), 
one would logically not expect such a brain injured patient to be able to regain linguistic abilities via posttraumatic rehabilitative training. 
Nevertheless, such patients will typically exhibit a more or less complete linguistic recovery - manifest at the level of surface phenomena 
[30-34,36,38,40-42]. One of the motivations for developing the original version of the REF model [23-27] was to be able - within the same 
neurocognitive model - to account for both functional localization and posttraumatic functional recovery.

Within the REF framework, it is at the lowermost level of analysis that one finds a true functional localization. What is represented 
within the lowermost level of analysis are the Elementary Functions (EFs). The neural substrate of a given EF is relatively small (compared 
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to the presumed neural substrates of traditionally defined functions) and is strictly localized within a subdivision of a neural structure (be 
it cortical or subcortical). Every EF performs a (“pre-wired”) relatively low-level information processing - receiving an input, performing 
the fixed processing and subsequently providing the output. The (unique) information processing of a given EF may best be described in 
mathematical terms - rather than in the more “traditional functional” vocabulary of for instance cognitive psychology. No EF is specifically 
associated with any of the traditionally defined cognitive functions (such as attention, spatial orientation, and visual perception). Rather, 
practically every EF is simultaneously associated with information processing mediating surface phenomena that can be characterized as 
various “cognitive functions” and/or behavioural manifestations. EFs can be seen as the “building blocks” of the mechanisms mediating 
the surface phenomena.

The mid-level of analysis constitutes the “bridge” between the lowermost and uppermost levels of analysis. Within this intermediate 
level one finds the Algorithmic Strategies (ASs) which are the mechanisms mediating the surface phenomena. A given AS mediates a spe-
cific surface phenomenon - in the form of a task solution, specific cognitive process etc. An AS consists of numerous interconnected EFs. 
The neural substrate of an AS consists of the neural substrates of all constituent EFs (typically distributed over many regions of the brain) 
as well as the connections between the neural substrates of these EFs. Consequently, the neural substrate of an AS is highly distributed. 

As ASs develop (see below), common areas between individual ASs may gain a functional autonomy - making them Algorithmic Mod-
ules (AMs). Like an AS, an AM is a connectionist network within which the “units” are EFs. Contrary to ASs, however, AMs are not able in 
themselves to mediate surface phenomena. An AM contributes its information processing by becoming integrated into an AS. Thus, AMs 
are to be considered “higher level building blocks” to ASs. This can be illustrated by an example from language production and language 
interpretation. Both are mediated by ASs - being the strategies mediating the surface phenomena of production or interpretation of 
linguistic expressions. But in contrast to these ASs, grammar may be mediated by an AM [43]. While grammar is obviously an important 
component within both production and interpretation of language, grammar cannot in itself be a surface phenomenon.

When an individual faces a situation calling for a behavioural manifestation and/or a mental process, mechanisms described else-
where [21] activate a pre-existing AS to become the neural mechanism mediating that behavioural and/or mental process. If an appropri-
ate AS is activated, the process will be successful. But if a less successful AS has been activated, the complete or partial failure will lead to 
a two-part process. One part is the continued search for a (more) appropriate AS. The other part is a backpropagation process [44-50] 
restructuring the AS which has been attempted as a mechanism as well as a number of related ASs. Additionally, the mechanisms select-
ing ASs will (also via backpropagation mechanisms) be modified in such ways that the likelihood of a more successful AS selection will be 
higher in the future.

If part of the brain tissue is lost, the EFs mediated by that brain region are lost permanently. Consequently, ASs including those EFs 
are also lost. And the surface phenomena associated with those ASs can no longer be mediated by the ASs in question. EFs are function-
ally unique and without any “backup” structures. Therefore, the only way to accomplish a functional recovery is for a reorganization of 
the connectivity between EFs to occur - leading to new ASs being available. If eventually a restructured AS is able to produce a surface 
phenomenon of equal proficiency to what was seen pretraumatically, the situation is described as a “full recovery”. It should, however, be 
noticed that such a recovery does not replace neither the neural substrate nor the cognitive mechanisms behind the originally lost surface 
phenomenon [26]. While traditional connectionist networks (which are networks of functionally neutral “neurons”) cannot account for 
a functional localization, the REF model can do so. A given brain region is (primarily genetically) pre-determined to mediate specific EFs. 
And when developing the functional organization of the normal brain, mechanisms such as those described above (selection and potential 
modification of ASs) will typically lead to rather similar organizations across individuals - simply because certain EFs are more obvious 
candidates for inclusion in a given AS than others. But as mentioned: lacking those originally developed ASs, alternative ASs can develop 
and potentially support the same proficiency of task performance (surface phenomenon) in spite of not doing so via the same neurocogni-
tive processes as in the “normal” brains.

From functions to strategies - methodological and computational challenges

Returning to the issue of “functional evaluations” of neurological patients, intact human beings and/or experimental animals, the 
“functions” such as working memory or allocentric spatial orientation are all surface phenomena - and mediated by ASs. Consequently, 
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the mechanisms that might be most relevant to address when addressing cognition in neurological research are the ASs (and potentially 
AMs) - the strategies. The fact that strategies rather than functions may be the adequate focus of study is also supported by research dem-
onstrating that neurocognitive mechanisms can be radically dependent on experience. One such example is that when performing a visual 
spatial task (mental rotation), orchestral musicians (contrary to musically naïve control subjects) include the Broca area in the neural 
substrate of task performance - and additionally exhibit a superior to normal quality of task performance [51]. 

Then how can experimental neurology step beyond the traditional concepts of “function” and better approach a strategy-based under-
standing of neurocognitive processes?

One approach - that has already been utilized and described for years - is to apply organic and/or cognitive/behavioural “challeng-
es” [4,27]. In organic challenges the functional efficacy of a given brain structure or brain system (structurally and/or neurochemically 
defined) is altered (either increased or decreased) and the associated behavioural/cognitive performance is investigated (often across 
experimental groups - e.g. originally lesioned and subsequently recovered individuals versus intact controls). Obviously, such methods 
are most easily applied in animal models [2,11-12,52,53]. In humans, such organic challenges have to remain noninvasive - but can be 
obtained using for instance TMS (transcranial magnetic stimulation) or tDCS (transcranial direct current stimulation) [54-63]. Functional 
challenges will typically involve modifications of the environment of the test situation (e.g. modified “cues”) and/or modifications of the 
test procedures (changed duration of pauses, modified order of stimulus presentations etc.) [2,10-12,52,53,64-66].

The combined results of organic and cognitive/behavioural challenges have repeatedly demonstrated that the successful performance 
of a cognitive test when compared across experimental groups (e.g. differently lesioned but fully recovered individuals) is accomplished 
utilizing different cognitive strategies [2]. Such results are in themselves informative regarding the fact that strategies may be a more 
adequate focus than traditionally defined “functions” (see references above). It does, however, not take into account the potential indi-
vidual strategy differences within a given group. Such individual variations in the utilization of strategies was already demonstrated by 
Krechevsky [67,68]. Novel methods do, however, hold significant promise regarding a more detailed account of individual strategies in 
both animal model based and human research. Such methods include the use of computational methods that can - in an experimenter-
unbiased way - extract “patterns of performance” from the behavioural/cognitive performance of individuals. A more detailed account of 
the use of such methods in the context of neurocognitive organization will be published separately. But presently we would like to refer 
to such methods as those published by Schulz., et al [69]. Such an analysis is based on the Damerau-Levenshtein distance analysis. The 
method has been successfully applied to humanly generated random number sequences. Analysing such sequences, it was possible to 
identify a “cognitive fingerprint” in each individual subject’s sequence generation. In the present context we consider such “fingerprints” 
to be reflections of the individually developed ASs and AMs. In a related study Rosenberg., et al. [70] compared such humanly generated 
random number sequences in three experimental groups: normal controls, alcoholic individuals, and patients suffering schizophrenia. Fo-
cusing on the individual performance of subjects and the potential intergroup variation, the authors demonstrated that while the internal 
variation matrices were rather similar between the normal group and the group of alcoholics, the intergroup variation (and consequently 
uniqueness of individual strategies/ASs/AMs) was significantly higher in the schizophrenic group.

The use of further developed computational methods like those presently referred to hold significant promise for a deeper understand-
ing of the ASs and AMs of both individuals and experimental groups. 

Computational methods are, however, also developed towards a deeper understanding of the neural substrate of ASs, AMs and poten-
tially EFs. Using EEG (electroencephalography) and/or MEG (magnetoencephalography) while subjects perform various types of cognitive 
tasks - for instance variants of the Raven test [71] - one can extract activity patterns relevant to various phases of the cognitive perfor-
mance utilizing a non-linear analysis of the EEG/MEG signal [71-74]. Such an analysis can provide regionally highly specific information 
regarding local shifts in the level of entropy. Utilization of such computational methods are likely to provide novel and dynamic pictures of 
the neural activity accompanying activation of individual ASs/AMs. 
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The mentioned computational methods are still being further developed in order to provide the optimal analysis of cognition as well as 
neural processes. It is, however, already obvious that the inclusion of these computational methods holds significant promises regarding 
an even more advanced understanding of the neurocognitive processes associated with both the individually applied strategies and the 
overall pattern of strategies across groups.

We do not argue that the described strategy-based analyses (including computational methods) should replace the more traditional 
testing methods in neurological research. But we do argue that they already constitute an important supplement and are likely to become 
even more useful and informative within the next few years.
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