

Is Hypertension Influence the Outcome of Stroke? Comparative Study between Ischemic and Hemorrhagic Stroke

Rizaldy Taslim Pinzon* and Debora Sharon Rory

Duta Wacana Christian Univesity, School of Medicine, Yogyakarta, Indonesia

*Corresponding Author: Rizaldy Taslim Pinzon, Duta Wacana Christian Univesity, School of Medicine, Yogyakarta, Indonesia.

Received: May 17, 2018; Published: July 12, 2018

Abstract

Purpose: This study aims to compare impact of ischemic and hemorrhagic stroke with hypertension on clinical outcomes.

Methods: This comparative study identified 346 patients over 40 years old who had hypertension and were first time ischemic stroke or hemorrhagic stroke patients recorded in the Bethesda Hospital Yogyakarta Stroke Registry (2015 - 2016). Clinical outcomes were measured using the modified Rankin Scale (mRS). The data was analyzed using univariate and bivariate analysis followed by the chi-square test and independent t-test.

Results: From the 346 patients with 173 acute ischemic stroke, consist of ninety-two male (53.2%), and eighty-one female (46.8%). Fifty four patients (31.2%) were fifty-one until sixty years old. Sixty two of those patients (35.8%) experienced poor functional outcome (mRS \geq 2). Compare to 173 hemorrhagic stroke patients, consist of one hundred and three male (59.5%), and seventy female (40.5%). Forty seven patients (27.2%) were fifty one until sixty years old, 128 of those patients (74%) experienced poor functional outcome (mRS \geq 2). Bivariate analysis showed that hemorrhagic stroke patient with hypertension were significantly associated with clinical outcomes (RR: 2.06, 95% CI: 1,66 - 2,56, p < 0,001).

Conclusion: Hemorrhagic stroke gives poor prognosis compare to acute ischemic stroke in patient with hypertension.

Keywords: Ischemic; Hemorrhagic; Stroke; Hypertension; Outcome

Introduction

Stroke is the first leading cause of death in Indonesia [1] and second leading cause of death behind heart disease, accounting for 11.13% of total deaths worldwide. First-time incidence of stroke occurs almost 17 million times a year worldwide; one every two seconds [2]. In 2012, stroke was responsible for the death of 6.7 million in the world in 2012 [3]. The burden of disease (disability, illness and premature deaths) caused by stroke is set to double worldwide by 2030 [4].

Hypertension presents in 70% of patients with stroke, it is the most common and the most potent and modifiable risk factor [4]. High blood pressure is a contributing factor to 54% of strokes in England, Wales and Northern Ireland [5]. About 69 percent of people who have a first heart attack, 77 percent of people who have a first stroke and 74 percent who have congestive heart failure have blood pressure higher than 140/90 mm Hg [6]. Blood pressure is a simple physiologic parameter that is always measured, can be modulated, the identification and recognition of these, will influence the mortality rate of stroke patients.

Observational studies have given varying results about high blood pressure (BP) is common in acute stroke and might be associated with a poor outcome. Previous study also showed that high BP in acute ischemic stroke or PICH is associated with subsequent death, death or dependency, and death or deterioration [7]. A multivariate logistic regression analysis was performed to determine the independent association of cardiovascular risk factors on stroke type. Hypertension favored either of the stroke types [8].

Methods

This comparative study used secondary data from patients admitted between 2015 and 2016 as listed in the Stroke Registry of Bethesda Hospital Yogyakarta. The sample consisted of 346 patients over 40 years old who had hypertension and were first time ischemic stroke or hemorrhagic stroke patients recorded in the Bethesda Hospital Yogyakarta Stroke Registry (2015 - 2016). Clinical outcomes were measured using the modified Rankin Scale (mRS). The data was analyzed using univariate and bivariate analysis followed by the chi-square test and independent t-test.

Results

From the 346 patients with 173 acute ischemic stroke, consist of ninety-two male (53.2%), and eighty-one female (46.8%). Fifty four patients (31.2%) were fifty-one until sixty years old. Sixty two of those patients (35.8%) experienced poor functional outcome (mRS \geq 2). Compare to 173 hemorrhagic stroke patients, consist of one hundred and three male (59.5%), and seventy female (40.5%). Forty seven patients (27.2%) were fifty one until sixty years old, 128 of those patients (74%) experienced poor functional outcome (mRS \geq 2).

The independent, confounding and dependent variables are presented in table 2 and 3 which in table 3, demonstrate that gastrointestinal bleeding was significantly associated with clinical outcomes of hemorrhagic stroke patients (RR: 0.683, 95% CI: 0.611 - 0.764, p < 0.001)

Bivariate analysis showed that hemorrhagic stroke patient with hypertension were significantly associated with poor clinical outcomes (RR: 2.06, 95% CI: 1,66 - 2,56, p < 0,001).

Characteristics	Ischemic		Hemorrhagic		
	N = 173 %		N = 173	%	
Age, years					
> 70	42	24.3	40	23.1	
61 - 70	43	24.9	42	24.3	
51 - 60	54	31.2	47	27.2	
40 - 50	34	19.7	44	25.4	
Sex					
Male	92	53.2	103	59.5	
Female	81	46.8	70	40.5	
Onset-to-door time (ODT)					
< 3 hours	20	11.6	26	15	
3 - 6 hours	31	17.9	50	28.9	
6 - 12 hours	31	17.9	33	19.1	
12 - 24 hours	26	15	21	12.1	
> 24 hours	65	37.6	43	24.9	
Complications					
Urinary Tract Infection	0	0	4	2.3	
Pneumonia	2	1.2	8	4.6	
Gastrointestinal bleeding	4	2.3	31	17.9	
Atrial Fibrillation	3	1.7	3	1.7	
Pressure sores	2	1.2	6	3.5	
Dyslipidemia	57	32.9	20	11.6	
Ischemic Heart Disease	7	4	6	3.5	
Treatments					
Antihypertension therapy	111	64.2	113	65.3	
Statin therapy	90	52	14	8.1	
Multivitamin	55	31.8	56	32.4	
Neuroprotector therapy	45	26	43	24.9	
Clinical outcomes					
Good (mRS < 2)	111	64.2	45	26	
Poor (mRS ≥ 2)	62	35.8	128	74	

 $\textbf{\textit{Table 1:}} \ \textit{Baseline characteristics of stroke patients with hypertension as main risk factor.}$

Variables	mRS < 2	mRS ≥2	RR	95% CI	p-value
Age, years					
40 - 50	33 (9.5%)	45 (13%)	1.00	Reference	0.001
51 - 60	54 (15.6%)	47 (13.6%)	1.70	0.94 - 3.06	
61 - 70	42 (12.1%)	43 (12.4%)	2.10	1.05 - 4.21	
>70 years	27 (7.8%)	55 (15.9%)	0.77	0.48 - 1.22	
Sex	27 (7.070)	33 (13.770)	0.77	0.10 1.22	
Male	64 (37%)	28 (16.2%)	1.00	Reference	0.114
Female	47(27.2%)	34 (19.7%)	0.72	0.48 - 1.08	0.111
Onset - to - door time (ODT)	17 (27.270)	31 (17.770)	0.72	0.10 1.00	
< 3 hours	23 (6.6%)	23 (6.6%)	1.00	Reference	
3 - 6 hours	32 (9.2%)	49 (14.2%)	0.77	0.34 - 1.73	0.282
6 - 12 hours	32 (9.2%)	32 (9.2%)	1.03	0.43 - 2.45	0.202
12 - 24 hours	23 (6.6%)	24 (6.9%)	1.30	0.49 - 3.42	
		-			
> 24 hours Ischemic Heart Disease	46 (13.3%)	62 (17.9%)	0.67	0.32 - 1.38	
Yes	4(2.3 %)	3 (1.7%)	0.829	0.344 - 1.999	
No			0.829	0.344 - 1.999	0.602
Dyslipidemia	107 (61.8%)	59 (34.1%)			0.693
	42 (24 20/)	15(0.70/)	1 5 4 0	0.046 2.506	
Yes	42 (24.3%)	15(8.7%)	1.540	0.946 - 2.506	0.067
No Atmini Fibrillation	69 (39.9%)	47 (27.2%)			0.067
Atrial Fibrillation	1 (0 (0/)	2(1.20/)	0.530	0.222 1.200	0.261
Yes	1 (0.6%)	2(1.2%)	0.529	0.232 - 1.209	0.261
No	110 (63.6%)	60 (34.7%)			
Urinary tract infection	0 (00/)	0 (00/)			
Yes	0 (0%)	0 (0%)	-	-	-
No Drawnania	111 (64.2%)	62 (35.8%)			
Pneumonia	0.60073	2 (4 20/)	0.254	0.206 0.420	0.057
Yes	0 (0%)	2 (1.2%)	0.351	0.286 - 0.430	0.057
No	111 (64.2%)	60 (34.7%)			
Gastrointestinal bleeding	0.60.043	4 (0.00()	0.040	0.050 0.400	0.005
Yes	0 (0 %)	4 (2.3%)	0.343	0.279 - 0.423	0.007
No	111 (64.2%)	58 (33.5%)			
Pressure sores	0.0000	2 (4 20/)	0.254	0.205 0.420	0.057
Yes	0 (0%)	2 (1.2%)	0.351	0.285 - 0.430	0.057
No	111 (64.2%)	60(34.7%)			
Antihypertension therapy	75 (42 40/)	26 (20 00)	1 202	0.000 1.004	0.214
Yes	75 (43.4%)	36 (20.8%)	1.293	0.869 - 1.924	0.211
No Statin thorony	36 (20.8%)	26 (15%)			
Statin therapy	(0.(24.5)	20 (47 22)	1 1 1 5 5	0.774 4.70:	0.474
Yes	60 (34.7)	30 (17.3%)	1.157	0.776 - 1.724	0.474
No	51 (29.5%)	32 (18.5%)			
Multivitamin	00 (40 ====	20(12.55)	0	0.500 4.10	0.015
Yes	32 (18.5%)	23(13.3%)	0.790	0.528 - 1.184	0.263
No	79 (45.7%)	39 (22.5%)			
Neuroprotectant					
Yes	26 (15%)	19 (11%)	0.796	0.523 - 1.211	0.299
No	85 (49.1%)	43 (24.9%)			

 $\textbf{\textit{Table 2:}} \textit{ Bivariate analysis of independent variables and dependent variable for is chemic stroke patients.}$

Variables	mRS < 2	mRS ≥2	RR	95% CI	p- value
Age. years					-
40 - 50	14 (8.1%)	30 (17.3%)	1.00	Reference	0.487
51 - 60	14 (8.1%)	33 (19.1%)	0.97	0.73 - 1.27	
61 - 70	8 (4.6%)	34 (19.7%)	0.84	0.65 - 1.08	
>70 years	9 (5.2%)	31 (17.9%)	0.88	0.67 - 1.14	
Sex	7 (8.270)	01 (171770)	0.00	0.07 1.11	
Male	26 (15%)	77 (44.5%)	1.00	Reference	0.780
Female	19 (11.0%)	51 (29.5%)	1.026	0.85 - 1.23	0.700
Onset - to - door time (ODT)	17 (11.070)	01 (27.070)	1.020	0.00 1.20	
< 3 hours	9 (5.2%)	17 (9.8%)	1.00	Reference	
3 - 6 hours	13 (7.5%)	37 (21.4%)	0.88	0.63 - 1.22	0.560
6 - 12 hours	10 (5.8%)	23 (13.3%)	0.93	0.65 - 1.34	0.500
12 - 24 hours	3 (1.7%)	18 (10.4%)	0.76	0.54 - 1.06	
> 24 hours	10 (5.8%)	33 (19.1%)	0.75	0.61 - 1.17	
Ischemic Heart Disease	10 (3.0%)	33 (17.1%)	0.03	0.01 - 1.1/	
Yes	1 (0.6%)	5 (2.9%)	0.884	0.611 - 1.278	
No	44 (25.4%)	123 (71.1%)	0.004	0.011 - 1.270	0.595
Dyslipidemia	44 (23.4%)	123 (71.1%)			0.393
Yes	8 (4.6%)	12 (6.9%)	1.264	0.874 - 1.827	
	-		1.204	0.674 - 1.627	0.120
No Atrial Fibrillation	37 (21.4)	116 (67.1)			0.129
Yes	0 (0 00/)	2 (1 70/)	0.735	0.672 - 0.805	
	0 (0.0%)	3 (1.7%)	0.733	0.672 - 0.803	0.200
No Urinary tract infection	45 (26%)	125 (72.3%)			0.300
•	0 (0 00/)	4 (2 20/)	0.734	0.670 0.002	0.220
Yes	0 (0.0%)	4 (2.3%)	0.734	0.670 - 0.803	0.230
No Pneumonia	45 (26%)	124 (71.7%)			
	2 (1 20/)	((2 50/)	0.006	0.654 1.406	0.047
Yes	2 (1.2%)	6 (3.5%)	0.986	0.654 - 1.486	0.947
No Gastrointestinal bleeding	43 (24.9%)	122 (70.5%)			
	0 (0 00/)	21 (17 00/)	0.602	0.611 0.764	-0.001
Yes	0 (0.0%)	31 (17.9%)	0.683	0.611 - 0.764	<0.001
No Procesure cores	45 (26%)	97 (56.1%)			
Pressure sores	1 (0 (0/)	E (2.00()	0.004	0.614 4350	0.505
Yes	1 (0.6%)	5 (2.9%)	0.884	0.611 - 1278	0.595
No	44 (25.4%)	123 (71.1%)			
Antihypertension therapy	22 (40 40/)	00 (46 20)	1 100	0.050.4.244	0.400
Yes	33 (19.1%)	80 (46.2%)	1.130	0.950 1.344	0.189
No No	12 (6.9%)	48 (27.7%)			
Statin therapy				0.007 - 7 - 7	
Yes	7 (4 %)	7 (4%)	1.522	0.895 - 2.588	0.033
No	38 (22%)	121 (69.9)			
Multivitamin					
Yes	17 (9.8%)	39 (22.5%)	1.092	0.894 - 1.335	0.367
No	28 (16.2%)	89 (51.4%)			
Neuroprotectant					
Yes	13 (7.5%)	30 (17.3%)	1.081	0.867 - 1.346	0.467
No	32 (18.5%)	98 (56.6%)			

 Table 3: Bivariate analysis of independent variables and dependent variable for hemorrhagic stroke patients.

Variables	mRS < 2	mRS ≥2	RR	95% CI	p-value
Type stroke					
Ischemic	111 (32.1%)	62 (17.9%)	1.00	Reference	< 0.001
Hemorrhagic	45 (13.0%)	128 (37.0%)	2.06	1.66- 2.56	

Table 4: Bivariate analysis of independent variables and dependent variable for type of stroke.

Discussion

Descriptive analysis showed that from 346 patients with 173 acute ischemic stroke sixty two of those patients (35.8%) experienced poor functional outcome (mRS \geq 2), compare to 173 hemorrhagic stroke patients, 128 of those patients (74%) experienced poor functional outcome (mRS \geq 2). Bivariate analysis showed that hemorrhagic stroke patient with hypertension were significantly associated with poor clinical outcomes (RR: 2.06, 95% CI: 1,66 - 2,56, p < 0,001).

There are two cohort studies that clearly showed that the higher the degree of hypertension, the higher is the risk of developing ICH. Leppălă., *et al.* [9] found an adjusted relative risk of 2.20 for systolic BP of 140 to 159 mmHg and 3.78 for \geq 160 mmHg compared with \leq 139 mmHg. In another study, Suh., *et al.* [10] found an RR of 2.2 for high normal BP, 5.3 for stage 1 hypertension 10.4 for stage 2 hypertension, and 33 for stage 3 hypertension. Hypertension related ICH tends to have a higher risk of hematoma expansion. Hematoma expansion is frequently associated with early neurological deterioration in patients with ICH. Patients with neurological deterioration had worse mRS (p < 0.001) [11].

Hypertension induces a high intraluminal pressure in the intracerebral arteries leads to extensive alterations in the smooth muscle wall and endothelium functions. Fibrinoid necrosis (lipohyalinosis) of penetrating arteries and arterioles supplying the white matter, resulting in small white matter infarcts (lacunes) or brain hemorrhage, hyalinosis, and Charcot-Bouchard aneurysms could be the form of the changes [12,13]. A condition that leads to a particular type of degeneration, known as lipohyalinosis or fibro-hyalinosis, which results in necrotic lesions in the small penetrating arteries of the brain [14]. Lipohyalinosis may lead to vascular occlusions, rearrangement of the cellular architecture and changes in the composition of the vascular wall alters the mechanical and hemodynamic properties of the vessels [13].

Conclusion

Hemorrhagic stroke gives poor prognosis compare to acute ischemic stroke in patient with hypertension.

Bibliography

- 1. World Health Organization. The Top 10 Causes of Death. Switzerland: WHO (2014).
- 2. World Health Organization. "State of The Nation: Stroke Statistics". England: WHO (2015).
- 3. World Health Organization. "Global Burden of Disease". Switzerland: WHO (2004).
- 4. Feigin VL., et al. "Global and Regional Burden of Stroke During 1990-2010: Findings From The Global Burden of Disease Study 2010". *The Lancet* 383.9913 (2013): 245-254.
- Royal College of Physicians Sentinel Stroke National Audit Programme (SSNAP). Clinical Audit April June 2015 Report. Royal College
 of Physicians, Clinical Effectiveness and Evaluation Unit on behalf of the Intercollegiate Stroke Working Party (2015).
- 6. American Heart Association. Statistical Fact Sheet 2013 Update: High Blood Pressure. Dallas: AHA (2013).

- 7. Willmot M., et al. "High Blood Pressure in Acute Stroke and Subsequent Outcome: A Systematic Review". *Hypertension* 43.1 (2004): 18-24.
- 8. Andersen KK., *et al*. "Hemorrhagic and Ischemic Strokes Compared Stroke Severity, Mortality, and Risk Factors". *Stroke* 40.6 (2009): 2068-2072.
- 9. Leppălă JM., *et al*. "Different Risk Factors for Different Stroke Subtypes: Association of Blood Pressure, Cholesterol, and Antioxidants". *Stroke* 30.12 (1999): 2535-2540.
- 10. Suh I., et al. "Low Serum Cholesterol and Haemorrhagic Stroke in Men: Korea Medical Insurance Corporation Study". Lancet 257.9260 (2001): 922-925.
- 11. Kumar S. "Hypertension and Hemorrhagic Stroke". Hypertension 3.2 (2017): 89-93.
- 12. Johansson BB. "Hypertension Mechanism Causing Stroke". Clinical and Experimental Pharmacology and Physiology 26.7 (1999): 563-565.
- 13. Ladecola C and Davisson RL. "Hypertension and Cerebrovascular Dysfunction". Cell Metabolism 7.6 (2008): 476-484.
- 14. Lammie GA. "Hypertensive Cerebral Small Vessel Disease and Stroke". Brain Pathology 12 (2002): 358-370.

Volume 10 Issue 8 August 2018 ©All rights reserved by Rizaldy Taslim Pinzon and Debora Sharon Rory.