
Cronicon
O P E N  A C C E S S EC NEUROLOGY

Review Article

Headaches, Pathogenesis and Therapies

Giorgia Andrisani1,2* and Giovanni Andrisani2

1Private Practice Tandzorg Delft Centrum, Sintsebastiaansbrug, Delft, Netherland
2Private Practice Studio Andrisani, Matera, Italy

*Corresponding Author: Giorgia Andrisani, Private Practice Tandzorg Delft Centrum, Sintsebastiaansbrug, Delft, Netherland and  
Private practice Studio Andrisani, Matera, Italy.

Citation: Giorgia Andrisani and Giovanni Andrisani. “Headaches, Pathogenesis and Therapies”. EC Neurology 10.2 (2018): 83-90.

Received: December 01, 2017; Published: January 24, 2018

According to lots of authors the predisposition to the migraine attack is based on an excess of cortical excitability (and there are many 
evidence suggesting that the migraine attack may originate at the level of a hyperexcited cerebral cortex).   The concept of migraine corti-
cal hyperexcitability is predominantly the result of studies conducted with non-invasive cerebral stimulation techniques. In particular, 
transcranial magnetic stimulation (TMS).  Neurophysiological studies have shown that cortical excitability variations can precede the 
beginning of Migraine attack [1-3], factors that can modify cortical excitability (e.g. menstrual cycle) may develop migraine [4] and pro-
dromal symptoms such as irritability, photophobia, phonophobia and osmophobia suggest a widespread increase in cortical responsive-
ness precedes the pain phase [5,6].

1) An excessive activation of glutammatergic excitation circuits is at the basis of the trigger and propagation of the waves of corti 
 cal spreading depression [7,8]; 

2)	 Levels	of	glutamate	in	plasma,	cerebrospinal	fluid,	platelets	and	erythrocytes	of	patients	with	migraine	with	and	without		 	
 aura increased compared to those of healthy subjects, both during interictal period and during attacks [9,10]; 

3) Anti-epileptic drugs acting on the glutamate system play a role in migraine prophylaxis therapy [11]; 
4) Animal models of Familial Hemiplegic Migraine (FHM) show that an increased release of glutamate represents a common   

 moment whit several genetic alterations at the base of the disorder [12,13].

Abstract
We would like to propose a Headaches Etiopathogenesis model and, in particular, of migraine (M), based on cortical hyperexcit-

ability	determined	by	an	 increase	 in	unspecific	activation	(UA)	caused	by	ARAS	nuclei,	activated,	specially,	by	 the	mesencephalic	
nucleus of the trigeminal nerve (Me5). This model wants to demonstrate how at a certain time in the migraine disease, the unspe-
cific	 activity	become	 so	 strong	 to	 generate	 an	unspecific	 cortical	 decode,	 non-sense,	 regarding	different	 functions	 related	 to	 the	
neurotransmitter in excess such as the Orexin (OX), hunger, thirst, yawns and so on; also regarding sensorial functions such as the 
eyesight, the vestibule apparatus (vertigos) or the sense of smell (olfactory hallucination).
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This “nonsense” decoding activate a sort of defence mechanism that is the cause, across “the Cortical Spreading Depression 
“(CSD),	of	the	Cortical	Activity	Decrease	throughout	the	unspecific	activity,	therefore	the	ARAS,	with	an	sudden	“resetting”	of	the	neu-
rotransmitter production, mainly the OX, with intense vasoconstriction, at the postero-lateral area of the Hypothalamus, where the 
OX	is	produced.	So,	the	Gasser	nerve	endings	reflex	is	activated,	leaving	a	substance	P,	Neurokinin	A,	Calcitonin	Gene-Related	Peptide	
(CGRP) and VIP (Vasoactive Intestinal Peptide etc), a protective antidromic way, with protective intent, causing intense vasodilatation 
and	activation	of	trigeminal	nociceptive	fibers	exaggerated	by	an	excessively	activated	Trigeminal	Caudal	nucleus	(NTC):	the	Migraine	
(M).

Introduction

This hypothesis is supported, besides neurophysiological and neuroimaging studies, by other experimental evidence: 

In	the	central	nervous	system	(SNC)	find	out	ample	space	the	diffused	and	scarcely	differentiated	projection	systems	commonly	as-
sociated with the name of ascending activating reticular system (ARAS), whose task is to ensure an adequate level of activation in all SNC 
structures and the cerebral cortex, which is able to work properly only when is activated by the reticular system. 

The increasing of the general level of responsiveness of the central nervous system (arousal) produced by the ARAS, it makes an easier 
action, on the perceptual elaboration of primary sensory areas, raising the UA level of the cerebral cortex and lowering the threshold for 
detecting stimuli. 

Arousal	fluctuations	strongly	affect	the	accuracy	and	speed	of	sensory	analysis	and,	reciprocally,	sensory	stimulation	condition	the	
level	of	vigilance.	Indeed,	any	sensory	stimulation,	in	addition	to	activating	a	specific	path	of	conscious	perception	of	information,	also	
causes the UA of the entire SNC through its connections with the reticular system, the UA of the entire SNC. 

An extreme and little-known case of this mechanism is that of Me5 which is constituted by ganglion cells located within the RF mesen-
cephalic, and which performs the function of UA of the bark, by activating the nuclei of ARAS, as a prevalent activity [14]. 
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The cerebral cortex of these patients is hyperexcitable in particular because of the action of Me5 on the nuclei of ARAS and that of the OX. 

The	intense	muscular	activity	of	bruxism,	causes	muscular	and	dental	pain	and	consequent	further	specific	cortical	activation	(due	both	
to muscular contraction and to dental pain) and, together with the mechanisms described above, cause typical pain of tense type headaches 
(TTH). 

Background

The Etiopathogenesis 

•	 To	promote	inflammatory	processes	and	vasodilation,	through	the	production	of	prostaglandins	and	NO
• Determine an increase in vascular permeability by stimulating the production of: - Bradykinin; Leukotrienes C4, D4 and E4;  
 PAF (a potent stimulator of platelet aggregation that stimulates serotonin secretion); Substance P; Calcitonin-related peptide  
 (CGRP); Somatostatin; Vasoactive intestinal peptide (VIP); Neurochinin A; Neurochinin B
• Stimulates the production of other cytokines such as IL-2 and the activation and recruitment of other immune system cells in  
 synthesis: the TTH. Obviously, the microglial reaction is aimed at the elimination of excess of glutamate of K+, of ATP and H+  
 [29-35]. 

Is	not	a	coincidence	that	both	events	(Bruxism	and	cortical	hyperactivity)	are	linked	each	other	being	the	first,	bruxism,	the	cause	of	
the second, cortical hyperexcitability. Cortical hyperactivation consists of a large number of glutamatergic synapses activated for each 
neuron,	AMPA,	Kainato,	and	especially	NMDA.	This	results	in	a	large	influx	of	Na+ and Ca++	ions	in	their	cytoplasm	and	a	large	outflow	of	
K+, H+ and ATP into the intercellular matrix. The excess of K+, H+ and extracellular ATP is able, physiologically, to activate, in the microglia’s 
cells, a group of so-called pattern recognition receptors (PRRs) capable of recognizing such substances and considering them as a sign of 
suffering [26-28]. 

The	activation	of	these	receptors	will	in	various	ways	lead	to	the	formation	of	specific	proteins	called	NLRP3,	which	can	be	assembled	
in	a	molecular	platform	called	 Inflammasome.	The	 Inflammasome	combines	many	pro-caspase-1	molecules	called	p45,	 causing	 their	
self-catalytic disintegration into the subunits. p20 and p10 which then assembles into its active form, the Caspasi-1, consisting of two 
heterodimers with a P20 and P10 subunits each. Once activated, Caspasi-1 can perform a variety of processes in response to the initial 
“inflammatory”	signal.	These	include	the	cleavage	of	pro-IL-18	in	IL-18	and,	above	all,	the	proteolytic	segmentation	of	pro-IL-1β	in	IL1β;	
this	is	a	pluripotent	cytokine,	able	to	perform	and	regulate	many	immune	functions	with	direct	involvement	in	the	activation	of	inflamma-
tory	responses	including	that	of:	to	promote	inflammatory	processes	and	vasodilation,	through	the	production	of	prostaglandins	and	NO,	
- determine an increase in vascular permeability by stimulating the production of: Bradykinin; Leukotrienes C4, D4 and E4; PAF (a potent 
stimulator of platelet aggregation that stimulates serotonin secretion); Substance P; Calcitonin-related peptide (CGRP); Somatostatin; 
Vasoactive intestinal peptide (VIP); Neurochinin A; Neurochinin B:

The role of the trigeminal-vascular system and in particular of the caudal nucleus of the Trigemino (NTC) remains central in the patho-
genesis of E, in which, during the migraine crisis, the increase of C-fos is observed, as well as in the periaqueductal gray (PAG), Locus Coe-
ruleus	(LC)	and	Hypothalamus,	as	shown	by	PET	images.	In	addition,	given	by	its	pharmacological	(Triptans	and	Ergotamine	are	efficient	
vasoconstrictors) and functional features (the RM shows vasodilatation), we can state that it is a vasomotor-like disease, which, by itself, 
is not a painful fact in the strict sense and, therefore, we must think that there is also a problem related to the structures responsible for 
the perception and processing of pain: still PAG, Hypothalamus, LC and NTC, also because the headaches are often associated with other 
disorders	of	altered	perception	of	pain,	such	as	fibromyalgia	[15,16]	or	temporomandibular	joint	disorders	[17,18].	

In the Hypothalamus seems to be involved the postero-lateral area, where Orexina (OX) is produced, which is also affected by pain pro-
cessing disorders and incorporated in the ARAS: a small nucleus made by few cells (about 20.000) but with a large number of functions. 

A particular association is between headaches and sleep [19-23]. 

However, we have a structure that, during sleep, makes us cyclically more sensitive to stimuli and, therefore, able to process them, ex-
ternal stimuli (environmental), and internal (physiological, such as ejecting liquids or excessive solids): this structure is the mesencephalic 
nucleus of the trigeminal nerve (Me5), whose activity is stimulated by the GABA of the VLPO/MnPO. Me5 consists of pseudo-unipolar cells 
of the ganglion type, its peripheral branches arrive at chewing muscles and at periodontal while the central branches stimulate, by releas-
ing glutamate (GLU), some nuclei of ARAS, particularly that of OREXINE (OX) but also the Trigeminal Caudal Nucleus (TCN), not ARAS. 

The Me5 crosses all the midbrain. It has a caudal part (Me5c), consisting of small GABAergic cells positioned just in front of the trigemi-
nal motor nucleus (Mo5), and inhibits it [14,25,101]. Upon arrival of the hypothalamic GABA, during sleep, Me5c is inhibited by that GABA 
and does not inhibit the Mo5, which is activates and leads to activation of chewing muscles and to the dental contact, with the activation 
of the Me5, thus of ARAS nuclei and, in particular, of the nucleus that produces OX, the so-called “center of appetite” [24]. 

The Me5, which cannot be inhibited by GABA because its cells are devoid of dendrites, also activates the Me5c, which begins again to 
inhibit the Mo5 and interrupts the Me5 action. This creates a situation where as sleep becomes more deep, hypothalamic GABA increases 
and, cyclically, activates the Me5 (we can see it at EEG in the form of a Cyclic Alternating Pattern or PAC) [14,25]. 

Unspecific	activation	(UA)	also	continues	during	sleep	and,	thanks	to	Me5,	causes	the	cortical	neurons	to	have	a	large	number	of	un-
specific	synapses	(due	to	Long	Term	Potentiation)	making	the	cerebral	cortex	of	these	subjects	hyperexcitability.
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Migraine’s Etiopathogenesis

CSD causes a reduction of cortical activity by reducing the AA, and thus the ARAS (probably activating the VLPO/MnPO nuclei that 
release GABA on the ARAS nuclei, in this case from awake), reducing production of OX from the hypothalamus of that side, with vaso-
constriction,	which	activates	 the	nervous	reflexes	of	Gasser’s	nervous	endings	which,	 stimulated	by	 the	NTC,	antidromic	release	of	P	
substance, neurokinin A, calcitonin gene-related peptide (CGRP) and VIP (vasoactive intestinal peptide), causing intense vasodilation, 
extravasation,	activation	of	nociceptive	fibers	etc:	the	Migraine	(M)	[32].

Both TTH and M share the same mechanisms, being involved in the same pathogenesis (UA surplus). Maybe, “pure” types of TTH or Mi-
graines do not. In support of our thesis we have the following data: In Polysomnograms of many patients with Migraine disorders PAC rate 
is relatively low than non-cephalic controls [55-62] (and it takes more GABA to sleep an hyper-excited patient), but inside each PACs there 
is an increase of type A phases to the detriment of B phases [59], sometimes causing an increase in Arousal that can to cause insomnia [63-
65] with a decrease in time total sleep [59]. In people affected by M, generally considered to be so excited, we have a deep sleep (low CAP 
rate, decreased REM and low Arousal) that often breaks [60-62]. Really, to better understand the PSG data, we should consider awakening 
as A-phase, indeed A3, even several minutes lung or hours, with great excitement due to the action of the Me5 that it activates just when 
the GABA is high (the patient with E often show bruxism) [66,67], and symptomatology can be improved with the use of oral devices (bits) 
[51,68-70]. These patients exhibit large UA excursions due to the large amount of GABA (CAP low and low UA) and UA peaks due to the 
intense activation of the Me5 (which lead to frequent night-time awakening and generally less sleep). Often these patients wake up with 
headaches, even during the night. During E, the fRMI shows vasodilatation in the areas of the hypothalamus [71], and the deep stimula-
tion of the posterior Hypothalamus is effective in CH [72]. Since vasodilatation is not, in itself, an pain event, the role of PAG modulation 
and excessive vasodilation due to excessive activation of the NCT are both prevalent in the migraines caused by the Me5 hyperactivity. 

In the pathogenesis of headaches the Orexins (OX) plays an important role. The OX derived from a common precursor, the prepro-
orexin,	whose	mRNA	is	specifically	expressed	in	the	postero-lateral	hypothalamus	and	adjacent	cerebral	areas	called	“appetite	center”.	
The	OX	plays	a	key	role	in	promoting	and	stabilizing	the	state	of	vigilance:	a	deficiency	of	this	peptide	leads	to	narcolepsy	[36-39].	Orex-
inergic neurons have connections with all nodes involved in the sleep-wake cycle and are actively inhibited during the NREM sleep stage 
by GABAergic neurons of the hypothalamic preoptic region [40]. The Orexinergic nuclei excite the cerebral cortex, both directly both in-
directly, through a widespread projection towards aminergic systems, particularly towards the Locus Coeruleus (LC) [41,42] and towards 
the cholinergic nuclei of the basal forebrain (Meynert nucleus) [43-45]. The OX activates LDT, PPT; DR; LC; VTA; PAG; TMN and ARC nuclei 
and it is inhibited by VLPO, DR, Leptin and increase of the glycemia. Ox cells send extra-hypothalamic extended projections to the fore-
brain, to cerebral cortex, hippocampus, amygdale, thalamic medial nuclei, area postrema, nucleus of the solitary tract and bone marrow 
[46]. Furthermore The OX stimulate: the release of glucocorticoids, the autonomous functions, the behaviour, the appetite, the metabolic 
rate, the gastric acid secretion (the OX stimulates the dorsal Vagus nucleus and the stomach motility [47] increasing the duodenum and 
ileum contractibility [48,49]. 

All we have said about TTH is also valid for migraine but the migraines characteristic is to affect mid-skull and especially the deep 
ocular	region	of	the	sore	side.	This	means	that	the	inflammatory	reaction	of	the	microglia	manifests	itself	only	in	one	half	of	the	head	and,	
therefore, that the hyperexcitability of the cerebral cortex is present only in that half of the head. Since this hyperexcitability is mainly 
due to the action of the OX we must assume that only one of the two nuclei of OX has been hyperactivated and in dental malocclusions 
the contacts rarely occurs simultaneously, with all the teeth of both dental arches, more often dental contacts occurs between the teeth 
of only one side (but with the same muscular strength): perhaps the Me5 on that side will be more activated and will activate more the 
orexinergic nucleus of the that side [50,51]. 

What happens, sometimes, in headaches: at some point the cortical UA of the corresponding emi-skull becomes so high that it blocks 
normal	nervous	transmission	or	generates	a	cortical	decodification,	nonspecific,	sometimes	“no	sense”,	or	that	may	relate	to	a	variety	of	
commonly associated functions to the neurotransmitter in excess and therefore to the OX, the so-called prodromes: hunger, thirst and, 
among them, yawns (the origin of which seems to be the paraventricular nucleus, one of OX targets) [52] but it may also relate to sensory 
functions such as vision (Aura) or vestibular (dizziness) or smell (olfactory hallucinations) or paresthesia. The no-sense decoding may 
activate protective mechanisms that stop UA by stopping neuronal transmission: the Cortical Spreading Depression (CSD) which can be 
defined	as	the	reaction	that	is	able	to	develop	the	cerebral	cortex	when	its	patterns	are	not	the	pre-established	ones	[53,54].	

Before talking about the therapies we would like to make a reference to the diagnosis: in general we speak of primitive and secondary 
headaches	and	sometimes	the	differential	diagnosis	is	difficult.	We	think	that	since	the	primitive	headaches	are	due	to	the	cortical	hyper-
activation whereas the secondary ones, generally not, we could make a differential diagnosis through the PSG, because in the primitive 
headaches	we	will	find	the	low	CAP	rate	(very	GABA	to	turn	off	the	very	active	ARAS	nuclei),	in	the	secondary	ones	the	CAP	rate	should	be	
normal (depending on the agent cause). 

Another aspect not addressed in this article is the importance of activation of pain pathways: we know that even non-headache pa-
tients may develop pain similar to that of migraine when stimulated with electrodes implanted in PAG and that PET images in the course 
of a migraine attack and in the intercritical period in these patients show the activation of PAG, DR and LC. All of these nuclei are targets 
of Me5 and participate in the Migraine’s mechanisms both by determining IC and vasomotor control, and by modulating pain pathways. 
Their	continuous	stimulation	(in	sleep,	through	bruxism)	can	lead	to	structured	functional	modifications,	with	chronic	IC,	easier	vasomo-
tor alterations and lowering of the pain threshold with consequent chronicization of the same. 
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This	model	of	headache’s	etiopathogenesis	clarifies	many	your	characteristics	,	prodromes,	aura,	CSD,	PSG	data,	but	its	true	strength	
is	that	it	allows	us	to	understand	the	therapies	we	administer	to	our	patients,	both	because	it	clarifies	the	mechanisms	through	which	the	
individual drugs act, both because it allows us to set new therapies, with the awareness of what we do, at last. In the acute phase we use:

•	 Anti-inflammatory	drugs,	steroids	and	non-steroids,	acting	on	the	mechanisms	of	inflammation	activated	by	the	microglia
•	 Vasoconstrictors	drugs,	acting	on	reflected	vasodilatation,	induced	by	antidromic	release	of	CGRP,	etc.,	from	the	nerve	endi		

 ngs of the ophthalmic nerve on meningeal vessels (e.g. Triptans).

The	headaches	have	been	classified	into	various	types,	probably	because	according	to	the	brain	areas	affected	by	the	IC	the	specific	
headaches	may	present	just	with	specific	symptoms.	Among	the	various	headaches,	the	cluster	headache	(CH)	is	particularly	interesting,	
both	because	it	is	particularly	serious	(its	pain	has	been	classified	as	one	of	the	worst	that	man	can	try)	and	because	of	its	clinical	charac-
teristics. CH affects mostly males and testosterone levels are low in CH subjects [80]. 

During	the	crisis	the	patient	is	very	agitated	and	his	OX/Hypo	levels	in	the	cerebro-	spinal	fluid	are	low	[81].	

We know that CH responds very well to the administration of high-dose O2 (minimum 12L / min) and we know that OXergic neurons 
are very sensitive to hypercapnia [82,83]. 

In addition, OX modulates cardiovascular, respiratory and sympathetic nervous activity [84-86], the “clusters” of CH are very similar 
to the cyclic activity promoted by Me5 during sleep, moreover Me5 has circadian genes that could determine the typical periodicity of this 
headache [85]. 

The	set	of	these	data	suggests	a	hypothalamic	difficulty	to	producing	Ox,	especially	when	Me5	tries	to	activate	OXergic	cells,	and	in	the	
presence of low levels of Testosterone.  It seems that in some periods of the year, when the Me5 is more active, as the cortical activation 
requests increase, the OXergic cells are exhausted and do not produce enough OX, especially at night, in the NREM, when the hypothalamic 
GABA increases and activates the Me5 which tries to activate the OXergic cells.  OXergic cells fail to meet the demands and decreases the 
OXergic stimulation of cardiovascular, respiratory and sympathetic nervous activity.  Parasympathetic activity related to the Trigeminal 
prevails, the ganglion sfeno-palatino is activated and the symptoms related to it are manifested (rhinorrhea, lacrimation, palpebral ptosis, 
etc.), moreover the intense activity of Me5 creates intense activation of the Caudal nucleus of the Trigeminal and, as in Migraine, we have 
hypothalamic	vasoconstriction	due	to	the	inactivity	of	OXergic	cells,	antidromic	release	of	CGRP	which	causes	great	reflex	vasodilation,	
always greater and with great pain: CH.

Therapies

In the prevention we use:

•	 Ca++ antagonists drugs, which inhibit the entry of Ca++ into the neurons through the NMDA receptor, opposing to the UA increase;

•	 Also Magnesium favors the closure of the NMDA receptor;

•	 Antiepileptic drugs (Lamotrigine, Topiramate, Gabapentin, etc.) that counteract many GLU synapses or activate GABAergic syn-
apses,	non-specific,	related	to	cortical	hyperactivation;	

•	 We also use the antagonists of the major neurotransmitters to lower the UA (e.g. Pizotifen, serotonin antagonist; Propranolol, beta 
blocker; Cinnarizine, antihistamines; but are also used drugs that increase the amount of certain neurotransmitters, the so-called 
inhibitors of the reuptake, especially, because serotonin (of DR) inhibits OX but, in our opinion, it’s a mistake to use these drugs, 
for headaches.

•	 Resection interventions on various nerves in the cranio-cervical area (e.g. N. Occipital) may have a positive feedback (the contribu-
tion of ARAS to the nerves of this district is always considerable and their abolition decreases sensibly the UA). 

•	 Some methods such as massages, acupuncture, relaxation techniques and feedback can help, because they decreases the UA. 

•	 This model explains why many migraine patients are graduates, excellent professionals or craftsmen or, in any case, very intel-
ligent people (there is high UA).

•	 I’m often overweight (high UA requires a lot of glucose). 

•	 Explains why a hypoglycemic diet, almost ketogenic [73]; it can work in the prevention (GLU is produced by Glucose, through the 
Krebs cycle and if the Glucose is a few cannot be large UA and our SNC is very sensitive to blood glucose). We like to point out that 
the Me5 activates the center of the vomit, in the posterior area [74], vomiting induces fasting, lowering blood glucose and then UA.

•	 Also explains why an oral appliance can work in headache care (properly adjusted, can modulate the action of Me5 on orexinergic 
cells) [24,51,68,69,75,76]; as we have already said, the intense muscular activity of bruxism, causes muscular and dental pain and 
consequent	further	specific	cortical	activation,	furthermore,	bruxism	causes	great	activation	of	the	Me5,	which	activates	the	ARAS	
nuclei	and,	above	all	the	one	of	the	OX,	increasing	the	non-specific	activation	of	the	cortex.	We	can	intervene	on	bruxism	in	a	real	
way, changing dental contacts, increasing or decreasing the their number them according to the case or in a virtual way: using oral 
devices (bites) through which to manage dental contacts and, therefore, bruxism.

•	 Explains why deep brain stimulation (DBS) [65] and also less invasive methods such as transcranial magnetic stimulation (TMS) 
works:	DBS	interferes	with	OX	production,	directly	in	the	Hypothalamus	while	TMS	interferes	with	the	electromagnetic	fields	gen-
erated by the remarkable AA of the cerebral cortex. 

•	 Explains the great activation of the hypothalamus shown by fRMI [60,77].
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In the treatment of migraine, of course, we can’t give drugs for all life. However, we can keep UA levels lower through an appropriate 
lifestyle:	low	glycemia	with	an	appropriate	diet,	we	can	also	fight	excessive	UA	by	exploiting	its	main	antagonist,	the	GABA	of	the	VLPO/
MnPO,	whose	excesses	are	due	to	a	number	of	factors	(Adenosine,	IL1β,	Prostaglandins	etc)	on	which	we	can	sometimes	act	in	different	
ways (e.g. trying not to go to bed too tired, cure any other illness, etc). These patients should implement a lifestyle appropriate to their 
characteristics: always work seven days a week, eat little, eliminate carbohydrates and spirits before go to bed (alcohol stimulates GABAA 
receptor and makes sleep more profound) , to sleep always the same amount of time (try to go to bed more or less at the same time and 
wake up at the same time, take good care of health of oneself, both from a general both dental point of view, and, if needed, put an oral 
appliance [72,75,76,78].

The etiopathogenesis model presented here is based on the idea, not only ours but most of the researchers who deal with this topic, 
that at the basis of primitive headaches there is an excessive excitability of the cerebral cortex, in our opinion caused by excessive OX 
production that, directly or indirectly, stimulates the cerebral cortex, in this case excessively (there are also headaches where the hyperac-
tivation is due to genetic alterations such as familial hemiplegic migraine or FHM). The effect of this excessive excitability is the activation 
of	the	microglia	which,	in	turn,	activates	the	mechanisms	of	natural	inflammation	by	producing	substances	(IL1β	and	prostaglandins)	
that cause CTT and migraine. The strength of this model is its ability to explain many features, symptoms and therapies of this pathology.

Conclusion

•	 Explains why the amount of sleep is important (little sleep means giving to ARAS little GABA and therefore having high UA, vice 
versa too much sleep means to activate too much the Me5 and, hence, high UA).

•	 Explains why OX is also responsible for the “headache of the weekend”: his levels constantly high in these individuals: allow 
them to carry out many activities, engage the mind and body and activating many brain areas, “consuming” during the working 
period, all the GLU available. During pauses (e.g. weekend) excess of GLU does not activate many brain areas and may result in 
non-sense activation, CSD, etc: the migraine.
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