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It is well known that running exercise promotes hippocampal neurogenesis in young animals [1-5] and that brain-derived neurotroph-
ic factor (BDNF) mediates this effect [6]. BDNF is a putative neuronal survival protein that has been shown to play a pivotal ameliorative 
role in development, learning and memory and trauma and disease, such as mood disorders [6-10]. Thus, it has also been shown that the 
intracellular signaling mechanisms underlying this ameliorative effect of BDNF are shared by both exercise and pharmacotherapeutic in-
terventions, such as antidepressant medications used for the treatment of mood disorders [6,11]. Much of the recovery process as a result 
of antidepressant and/or running exercise is a result of putative BDNF-induced dendritic arborization and/or axonal extension [12-14], 
synaptogenesis [15] and neurogenesis [9,16].

In addition, in vitro application of norepinephrine to embryonic hippocampal neurons increases hippocampal BDNF and two critical 
cell survival signaling pathways, PI-3K/Akt and MAPK, and phospho-cyclic adenosine-monophosphate binding protein (CREB) [17]. The 
application of norepinephrine to neurons in culture provided us with a viable tissue culture model that mimics the sympathetic nervous 
system-activated release of norephinephrine and epinephrine that occurs during physical exercise. Thus, norepinephrine-induced in-
crease in BDNF has neuroprotective effects on neuronal survival when cells were stressed, deprived of certain critical nutrients [18,19]. 
This increase in hippocampal BDNF was brought about activating the phosphatidylinositol-3’-kinase (PI-3K)-Akt pro-survival pathway, 
which led to increased CREB phosphorylation.

There is evidence that running exercise-induced Wnt signaling mediates hippocampal neurogenesis in young animals through an up-
regulation of BDNF [10]. Whether this also occurs in aged animals is still unknown, as the evidence for this is extremely sparse [20]. With 
general aging, there is a down-regulation of axonal growth, cytoskeletal assembly and transport, signaling, lipogenic uptake pathways and 
concomitant increase in immune/inflammatory lysosomal, protein/lipid degeneration, cholesterol transport, TGF and cAMP-mediated 
pathways [21]. In cognitively impaired aged rats, there is down-regulation of Wnt, insulin and its influences in lipid and glycogen path-
ways, and G-protein-coupled receptor (GPCR) signaling [21]. However, Miranda., et al. [22] investigated the communication between 
neural progenitor cells and astrocytes. They applied survivin, a chromosomal passenger protein (aka Birc5), to neural progenitor cells. 
Age-associated changes in neural progenitor cell proliferation reveal a decrease in neural progenitor cell with age, indicating that astro-
cytes in the neurogenic niche regulate changes in Wnt signaling via survivin regulation within neural progenitor cells [22]. That is, Wnts 
secreted from neighboring astrocytes regulate survivin expression and proliferation of adult neural progenitor cells [22]. And predictably, 
impaired Wnt signaling leads to decreased neurotrophin-induced neuroprotection and concomitant pathology [23].

Much of our understanding about Wnt signaling comes from studying crosstalk between astrocytes and neural progenitor cells [24]. 
In vivo, astrocytic Wnt3/3a expression and release decreases with age [25]. Moreover, in young and aged astrocytic cultures expressing 
Wnt3 shRNA, there was increased tubulin III and synapsin I expression, indicating that astrocytic Wnt3a causes a neurogenic effect on 
adult hippocampal neural stem cells in an age-dependent manner and that such cells are primed for increased growth and neurotransmit-
ter release. 
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These neural stem cells will eventually become granule cells in which the Prox1 promotor will be regulated, which remains highly ac-
tive throughout the maturation of the granule cell and may be responsible for specifying the neuronal phenotype [26]. Furthermore, Oka-
moto., et al. [24] found that the doublecortin (dcx) genes activate the dcx promotor, which contains two L1 sequences regions with Wnt 
signaling regulatory sites. At the Neurod1 promotor, binding of acetylated histone A3, -catenin, and CREB gradually decreases with aging, 
indicating that the aging process controls the repressive chromatin state. It is possible that physical exercise may decrease this repression.

Aging specifically compromises Wnt pathway signaling [25], whereas exercise increases Wnt3 expression, thereby reversing the de-
cline in neurogenesis brought on by age [24], as well as genes downstream of it [27,28]. In addition, although either an enriched environ-
ment or Wnt7/7a application had the same effects on neurogenesis [29], it is possible that the running component of such a stimulating 
environment was the crucial ingredient in eliciting neurogenesis [30].

Recent studies have shown that Ginko biloba also has neuroprotective effects in a rat model of depression [31] and stroke [32]. Such 
neuroprotection may occur through activation of the transcription factor CREB [32,33] and the promotion of neurogenesis [34]. Such find-
ings naturally beg the question regarding the potential benefits to be derived from natural medicines. Many of the drugs in use today, such 
as morphine, digitalis and vinblastine, are alkaloids – derived from natural compounds. However, each of these is a single molecule with a 
specific pharmacologic profile. For natural plant extracts, such as Ginko biloba, comprehensive detailed studies should be carried out on 
its main active ingredients, such as bilobilide [35] and quercetin [36]. There is much potential in the ability of such molecules to be medi-
cally beneficial [35,36] if more progress can be made to thoroughly characterize each chemical or at least, each putative active ingredient. 
Only through a thorough understanding of the molecular and genetic mechanisms of such molecules [37,38] can light be shed on how the 
extract works as a whole. And when combined with physical exercise, pathology-induced clinical functional loss can be delayed even more 
than when only one or the other intervention alone is employed.
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