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Abstract
Hypoxic ischemic encephalopathy (HIE) is a major cause of neonatal mortality and morbidity. Of those affected neonates, 15-

20% of them will die in the postnatal period, and an additional 25% will sustain childhood disabilities. However, recent studies have 
shown that treatment with moderate hypothermia for HIE increases survival without neurologic deficit at the age of 18 months, pro-
viding us a proof that neuroprotection of the newborn is possible. Despite the beneficial effects of hypothermia, approximately half 
the infants who receive hypothermia still have abnormal outcomes. Evidence from the recent animal experiments and pilot studies 
in babies suggest that other agents combined with hypothermia may enhance overall neuroprotection. This review discusses such 
neuroprotective agents.
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Introduction

Neonatal encephalopathy (NE), following intrapartum hypoxia-ischemia, continues to be a significant cause of death and developmen-
tal disability in children. Every year, there are reported 4 million neonatal deaths worldwide and NE is attributed to approximately 23% 
of them [1]. In high-income countries such as UK, NE affects approximately 2 per 1000 neonates [2]. However, in low and middle-income 
countries such as India, it occurs in approximately 7-20 per 1000 neonates [3]. The spectrum of abnormal neurological outcome following 
NE could vary from cerebral palsy to significant disabilities including blindness, deafness and cognition problems [4,5].

Therapeutic hypothermia for infants with hypoxic ischemic encephalopathy has been extensively studied in preclinical models [6] 
and several major randomized trials [7-9]. Evidence from the trials suggest that moderate hypothermia for infants with hypoxic ischemic 
encephalopathy reduces death and disability [10]. Therapeutic hypothermia is now a standard practice in several countries [11]. Despite 
the remarkable benefits of hypothermia, one meta-analysis indicates that the composite adverse outcome following hypoxic ischemic en-
cephalopathy reduces from 58% to 47% with hypothermia [12]. However therapeutic hypothermia lengthens the latent phase before the 
onset of secondary energy failure thereby expands the duration of the therapeutic window [13]. Neuroprotective agents, given during this 
time, may add incrementally to the proven benefit of hypothermia [14-16]. This review considers those agents and their neuroprotective 
ability to improve adverse outcome following hypoxic ischemic encephalopathy.

History & Background

Scientific studies of neonatal therapeutic hypothermia started in the 1950s when researchers like Bjorn Westin described their work 
in terms of re-animation rather than neuroprotection [17, 18]. Several other investigators carried out clinical observations and careful 
physiological experiments [18-22]. In the 1960s, however, clinicians saw hypothermia in newborn babies was something to be avoided. 
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The problem of infants who did not breathe at birth had been solved by the invention of mechanical ventilation, so any benefit of cooling 
was no longer needed, and a significant study showed that keeping small infants warm increased their survival [23]. These results, to-
gether with observational [24] and experimental [25] data made it an article of medical faith for years that babies should not be allowed 
to get cold. Although, in the Soviet Union, cooling was being applied empirically following birth asphyxia [26], the language barrier, cold 
war politics and the Russians’ failure to carry out randomized controlled trials contributed to an almost total ignorance of this work in 
the West.

In the late 1980s, the development of a new set of concepts and problems led to a re-examination. The growing evidence that protect-
ing the brain against the effects of oxygen deprivation during labour might be possible influenced a new generation of neonatal research-
ers. These researchers were aware that cooling produced powerful intra-ischaemic neuroprotection during cardiac surgery but a new 
concept of hypothermic post-insult neural rescue developed. This shift in thinking was possible because of few major new ideas that were 
developing at the same time: delayed post-ischemic cell death, excitotoxicity and apoptosis.

The first paradigm shift that influenced researchers in particular was the idea that if a baby was resuscitated after hypoxia-ischemia 
there was a period of time before brain cells started to die. Researchers at University College London used the newly developed technique 
of Magnetic Resonance Spectroscopy (MRS) to show that the infant brain metabolism is normal in the hours after birth asphyxia and de-
teriorated only after a distinct delay [27]. Robert Vannucci confirmed the effect [28] and delayed injury was also reported in neuropatho-
logical studies [29,30]. Delayed brain injury (called ‘secondary energy failure’) was a critical new idea. If brain cells remained normal for 
a time and the mechanism of the delayed death could be unraveled, it opened the possibility of therapeutic intervention [31]. 

The concept of excitotoxicity was due to the work of John Olney [32,33] and Brian Meldrum [34]. They showed that the neural cell 
death caused by hypoxia-ischemia is mediated by excess production of the excitatory neurotransmitter glutamate, and that pharmacologi-
cal blockade of the N-methyl-D-aspartate receptor could provide good protection against hypoxic damage. The discovery of programmed 
cell death, a novel form of cell suicide was observed as a pathological appearance and named apoptosis (“falling off”, as of leaves) in the 
1970s [35], Horvitz [36], Raff [37], and Evan [38] provided a molecular understanding and showed that apoptosis could be triggered by 
cellular insults.

Neuroprotective agents
Xenon (Xe)

Xenon is a rare noble gas and is approved for use as a general anesthetic. Xenon is a non-competitive antagonist of the N-methyl-D-
aspartate (NMDA) subtype of the glutamate receptor [39]. Other actions of Xenon are inhibition of calcium/calmodulin dependent protein 
kinase II [40], activation of anti-apoptotic effectors such as Bcl-XL and Bcl-2 [41], and activation of background two-pore K+ channel [42]. 
Xenon also activates the induced expression of hypoxia inducible factor 1 α and its downstream effectors erythropoietin and vascular 
endothelial growth factor, which can interrupt the apoptotic pathway [43].

In the animal studies, it has been shown that Xenon is neuroprotective following hypoxia - ischemia and synergistic effect was ob-
served when administered with mild hypothermia [44,45]. This effect was retained even if xenon is delayed or asynchronously applied 
with hypothermia [46,47]. Xenon also has a remarkable safety profile, given its apparent hemodynamic stability and myocardial protec-
tive properties [48-50]. Xenon is a very expensive agent and must be scavenged and reused. Recently, a randomized controlled pilot study 
(Toby Xe) in UK has shown that 30% Xenon, when given (within 12 hours of birth) to newborn babies with moderate to severe encepha-
lopathy along with hypothermia, did not enhance the neuroprotective effect of cooling [51]. Another phase 2 randomized control study 
(cool xenon 3 study) is currently underway in UK (clinical trials NCT02071394), aiming to give 50% Xenon along with hypothermia. In 
brief, the exact concentration and duration of xenon therapy needed for neuroprotection in newborn infants is yet to be established.

Melatonin

Melatonin is a naturally occurring hormone produced in the pineal gland, retina and gastrointestinal tract. Melatonin acts as an anti-
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oxidant, scavenging hydroxyl and nitrosyl free radicals. It also stimulates other antioxidant enzymes including glutathione peroxidase and 
superoxide dismutase. Melatonin readily crosses blood brain barrier because of its lipophilic properties, and binds to specific receptors 
in brain.

Melatonin has been shown to be neuroprotective following brain injury in animal models. Neuroprotection was observed when mela-
tonin was given before or after hypoxic-ischemic insult in a rat model with dose range between 5 and 15mg/kg [52,53]. Melatonin is ben-
eficial in reducing neurotoxic effects on developing white matter in a mouse model [54]. Delayed administration of melatonin is also pro-
tective following transient focal hypoxic-ischemic insult in rats [55]. Melatonin also attenuates gray and white matter damage in a mouse 
model of transient focal hypoxic-ischemic insult [56]. Other neuroprotective effects of melatonin include anti-inflammatory [55] and 
anti-apoptotic activities [57]. Melatonin showed neuroprotection in fetal sheep when it was given after umbilical cord occlusion [58]. The 
optimal neuroprotective dose has yet to be determined, as wide range of melatonin doses were used in various species from 0.005mg/kg 
in newborn mice [54] to 20 mg/kg/hour in fetal sheep [58]. In newborn piglet model of asphyxia, a 5-mg/kg infusion for 6 hours started 
10 minutes after resuscitation and repeated at 24 hours augmented hypothermic neuroprotection [59]. No adverse effects of melatonin 
were observed when it was evaluated in two small studies involving term newborn infants [60,61]. Recently, one clinical study involving 
small group of newborn infants with HIE, early administration of melatonin (10 mg/kg, enteral administration) had improved survival 
without neurological abnormalities at 6 months of age [62]. In summary, melatonin possesses multifaceted neuroprotective capacity and 
shows almost no toxicity in humans, it is likely that more clinical studies will commence in near future.

N-acetyl cysteine (NAC)

N-acetyl cysteine (NAC) is an amino acid supplement, and a precursor of glutathione. It has multiple actions including anti-oxidant, 
anti-inflammatory and anti-apoptotic activities. It has low toxicity, crosses the placenta and blood brain barrier. NAC has been widely 
used in children as an antidote for paracetamol intoxication and also for mucolysis. NAC reduces reperfusion injury and decreases inflam-
mation and nitric oxide production in adult models of stroke [63]. NAC was observed to provide remarkable neuroprotection in animal 
model following lipopolysaccharide (LPS)-sensitized hypoxic-ischemic brain injury [64]. NAC also attenuates LPS induced inflammatory 
response and metabolism of phospholipids at feto-maternal interface in pregnant rats [65].

NAC reduced cerebral oxidative stress and cerebral lactate, improved cerebral perfusion in a piglet model of hypoxia-reoxygenation 
[66]. NAC combined with hypothermia, decreased infarct volume, improved myelin expression and functional outcomes in a rat model 
after focal hypoxic ischemic injury [16]. The neuroprotective effect of combined hypothermia and NAC is also shown in spinal cord isch-
emia [67].

In human studies, NAC was shown to achieve predictable plasma concentrations in fetus, when administered to pregnant women, 
indicating that antenatal neuroprotection may be possible for vulnerable babies [68]. NAC has already been studied in newborn babies, 
making it a safe drug to study as a neuroprotectant [69]. Currently, a study, using NAC and TH in newborn babies with HIE, is being done 
in Imperial College London (MARINAC study). We will know more about the value of NAC in neonatal neuroprotection in the near future.

Allopurinol

Allopurinol is a xanthine-oxidase inhibitor, used to treat chronic gout. Xanthine oxidase is an enzyme involved in superoxide produc-
tion. In high concentrations, it also scavenges free radicals and prevents free radical formation by chelating with free iron. Thus, in high 
doses, it was found to be neuroprotective. In rat model, Allopurinol reduced cerebral edema and long term brain damage when given after 
cerebral hypoxia-ischemia [70]. When Allopurinol was given as pretreatment, it preserves cerebral energetics during perinatal hypoxia-
ischemia [71].

Allopurinol reduced reperfusion injury in adults undergoing coronary bypass surgery [72]. When infants with hypoplastic left heart 
syndrome undergo deep hypothermic cardiac arrest, pre-treatment with Allopurinol reduces adverse postoperative neurological and 
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cardiac outcomes [73]. Recent Cochrane review suggested that larger trials are needed to assess the neuroprotective effect of allopurinol 
in conjunction with hypothermia in infants with moderate to severe encephalopathy as the meta-analysis did not reveal any statistical dif-
ference [74]. Allopurinol crosses the placenta and must be administered early for neuroprotection as it acts through free radical scaveng-
ing property. Maternal allopurinol administration during fetal hypoxia reduces cord blood levels of S-100B [75]. ALLO trial, a multicenter 
randomized controlled trial in the Netherlands, has recently shown that when allopurinol was given to pregnant women at term in whom 
the fetal hypoxia is suspected, it did not significantly lower neuronal damage markers in cord blood [76].

Erythropoietin (EPO)

Erythropoietin is a naturally occurring glycoprotein and a pleiotropic cytokine, which stimulates erythropoiesis in human neonates. 
Erythropoietin is a large molecule that crosses the blood brain barrier by active transport mechanism [77]. Epo receptors are situated 
throughout the central nervous system on neurons, glia and endothelial cells; they participate in proliferation and differentiation of these 
cells and is up-regulated in umbilical cord blood from asphyxiated babies [78]. Intracerebral production of Epo has been reported after 
hypoxic stress in neonates [79].

Epo appears to have multiple neuroprotective properties such as direct neurotropic effect, decreased susceptibility to glutamate tox-
icity, induction of anti-apoptotic factors, anti-inflammatory effects and anti-oxidant effects. The vital role for Epo is repair; Epo binding 
stimulates neurogenesis, oligodendrogenesis and angiogenesis. Evidence from preclinical and clinical studies showed the conditioning 
and regenerative potential of Epo, which is now emerging as a promising neuro protectant. Preclinical studies have suggested that Epo is 
neuroprotective following hypoxia-ischemia and reperfusion when given either before or after the hypoxic-ischemic insult [80,81]. Sev-
eral clinical studies have shown Epo is safe in newborn babies and the neuroprotective effects of Epo. Early administration and high dose 
of Epo enhances long term neuroprotection and promote neurogenesis in neonatal infants following neonatal stroke [82]. A randomized 
control trial of term infants with moderate or severe hypoxic ischemic encephalopathy reported that adverse neurological outcome was 
significantly less in Epo treated infants (300 or 500 units/kg) [83]. A study of 45 term infants comparing single-dose Epo alone on day 0 
with 72h therapeutic hypothermia alone for treatment of NE found superior protection in the hypothermia group [84]. A number of large 
studies are currently underway [85]. Complications seen in adults such as hypertension, clotting, seizures, polycythemia have not been 
observed in infants.

Anticonvulsants

Evidence from both animal and human studies has shown that seizures enhance neonatal hypoxic-ischemic damage [86,87], thus ef-
fective prevention of seizures could attenuate brain injury. Two anticonvulsants of particular interest are topiramate and levetiracetam.

Topiramate is widely used as an anticonvulsant in paediatric population [88] and it has several mechanisms of action. It modu-
lates inhibitory gamma-aminibutyric acid(GABA)-mediated receptors and blocks presynaptic alpha-amino-3 hydroxy-5 methyl 
-4isoxazolepropionate(AMPA) excitatory channels and modulates voltage-activated Na+ and Ca++ channels, which may reduce excessive 
release of glutamate following hypoxia-ischemia [89-91].

Topiramate, when combined with hypothermia, improved functional performance and reduced the severity of brain injury in a rat 
stroke model [15]. Topiramate also suppresses acute seizures and reduced neuronal fragmentation in a rat pup model of asphyxia [92]. 
In a p7 rodent model, topiramate was found to be neuroprotective by reducing white matter injury following hypoxic-ischemic insult and 
decreased motor deficits [93]. In a piglet model of hypoxia-ischemia, topiramate, when given in high doses (20 mg/kg) compared to low 
doses (10 mg/kg) markedly reduced the severity of neuronal injury [94]. However, further studies are needed to assess the effect of hy-
pothermia on the metabolism of topiramate as it has been shown that therapeutic hypothermia reduces both absorption and elimination 
of topiramate [95].

Levetiracetam is the S-enantiomer of etiracetam. The US FDA approved it in 1999 and by UK for epilepsy recently. It has become one 
of the first line anticonvulsant recently. Neuroprotective properties of Levetiracetam were shown in animal model of focal cerebral isch-
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emia [96]. In a recent pilot study in neonatal infants, there were no adverse effects noted when Levetiracetam was used to treat neonatal 
seizures [97] and also it was noted that it does not induce cell death in the developing brain even at high dose [98].

Conclusion and Future directions in research

Over the past couple of decades, significant advancement has been made in neuroprotection for neonates. Many years of clinical and 
basic science research into the pathogenesis of HIE in term infants have been translated into the clinical use of therapeutic hypothermia 
for infants with HIE, and it is standard of care for neonates with HIE in many countries currently. There is also great potential to augment 
hypothermic neuroprotection with co-administered neuroprotective agents.

Further preclinical and clinical studies are needed to demonstrate the best neuroprotective agent when combined with hypothermia 
to provide effective neuroprotection following hypoxic ischemic encephalopathy. It is vital to ensure that developing brain is not further 
affected by the use of newer drugs when tried alone or in combination with others. The challenge will be to ensure the timing and dose of 
each neuroprotectant, which are appropriate for the phase of injury to ensure optimal and lasting protection. Eventually, it seems that in 
the future, a cocktail of multiple neuroprotective agents will be used to treat neonates with HIE that will act on different pathways in the 
pathogenesis. Moreover, prediction and prevention of at risk fetus before delivery is essential. Hence, clinical tools to reliably predict term 
fetuses at risk for HIE and strategies to ameliorate that risk before brain injury occurs are vital.
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