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Alzheimer’s disease (AD) is a progressive neurodegen-
erative disorder characterized by the presence of amyloid 
plaques and neurofibrillary tangles in the brain ultimately 
leading to cell death and dementia. Currently there is no 
cure for AD. A number of research groups reported disrup-
tions in neuronal activity preceding neuronal cell death. 
Disruptions in default mode network activity have been 
reported in asymptomatic cognitively normal adults [1,2]. 
Additionally disruptions in neuronal oscillations, such as 
gamma oscillations and corticothalamic slow wave activity, 
important for consolidation of memories during sleep have 
been reported in humans and animal models of AD [3-8]. In-
terestingly, oscillatory activity disruptions precede the on-
set of AD symptoms, and occur during the preclinical stages 
of disease, such as Mild Cognitive Impairment (MCI) [4].

A number of clinical trial failures underscores the need 
for further insight into the etiology and mechanisms of AD 
progression. Furthermore, intervention during the early 
disease stages, prior to substantial neuronal loss will pro-
vide for more efficient therapeutic alternatives. Transgenic 

mice yield valuable animal models to gain insight into the 
cellular and molecular mechanisms of neuronal activity 
disruptions early in the disease progression. Until recently 
it has been difficult to address the cause and effect ques-
tions when it comes to neuronal activity disruptions and 
how to best restore neuronal circuit function in AD.

The advent of optogenetics provides a valuable tool to ask 
these questions in animal models of disease in the in vivo 
context critical for understanding the interplay of mole-
cules and circuits. Optogenetics involves genetically target-
ed optical and relatively noninvasive manipulation of neu-
ronal activity with light activation [9,10]. It allows scaling 
of neuronal activity manipulation from individual neurons 
to that of entire neuronal networks. This methodology is 
more precise than other means of neuronal stimulation, 
such as use of electrodes, since optogenetics provides tem-
poral and spatial resolution comparable to the elementary 
building blocks of neural codes. The duration and the pat-
tern of light pulses can be varied with millisecond-scale 
temporal precision. Furthermore, specific cell type target-
ing is achieved with cell-type specific promoters. Neuronal 
activity can be facilitated with light activation of Channel-
rhodopsins or inhibited with light activation of Halorho-
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dopsins and Archaerhodopsins [11-15]. Recently a number 
of Channelrhodopsin and Halorhodopsin derivatives have 
been developed, including red-light-drivable ones that en-
able large-volume, even noninvasive neural control [16,17]. 
Thus optogenetics serves as an excellent toolset to study 
neuronal activity disruptions and to provide insight into 
promising approaches to restore those activity aberrations.

Recently a number of studies have been conducted im-
plementing optogenetics in investigating AD progression 
and pathogenesis. An important outstanding question in 
the AD field was whether increasing neuronal activity leads 
to exacerbation of amyloid and tau pathology in vivo. Yama-
moto., et al. have reported that increasing neuronal activa-
tion in hippocampi of AD mice leads to increased amyloid 
production and deposition [18]. Also, optogenetic increases 
in neuronal activity result in elevated tau production and 
pathology [19]. Consequently, optogenetics allowed estab-
lishing a direct causal link between hyperactivity and amy-
loid as well as tau pathology.

Recent and exciting work aimed to address the question 
of whether encoding or retrieval of memories is impaired in 
AD mice. Hippocampus plays a critical role in encoding and 
retrieval of episodic memories, which are disrupted in early 
stages of AD progression. Optogenetic activation of memory 
engrams restored memory retrieval in AD mice, suggesting 
that memory encoding was intact [20].

Additionally, efforts have been made to highlight the im-
portance of neuronal oscillatory activity in the brains of AD 
patients. Oscillations take form of periodic and repetitive 
electrical activity generated by neurons. Gamma oscilla-
tions generated in the hippocampus are important during 
sharp-wave ripples. Disruptions in gamma waves have 
been reported in AD animal models prior to amyloid depo-
sition [7]. Interestingly, restoration of gamma oscillations 
with light activation of Channelrhodopsin-2 resulted in de-
creased amyloid beta production and overall amyloid beta 
levels. Furthermore, normalization of gamma wave activity 
led to morphological changes in microglia [7]. Intriguingly, 
optogenetic stimulation at a random frequency failed to re-
duce amyloid burden in these mice. Thus, normal gamma 
oscillation activity is likely to prevent pathological AD ad-
vancement.

Another form of oscillatory activity that has been impli-
cated in AD pathogenesis is slow wave activity. Slow oscilla-
tions important for consolidation of memories during sleep 
are disrupted in early stages of AD in humans [4]. Animal 
studies have recapitulated these disruptions [5,6]. Howev-
er, it was unclear whether slow wave activity disruption is 
an epiphenomenon of AD progression or slow waves play 
an active role in AD pathogenesis. To address this ques-
tion, slow oscillations were rescued with light activation of 
Channelrhodopsin-2 and determined that it halted amyloid 
plaque deposition and restored calcium homeostasis, which 
is disrupted in AD [6]. Thus the normal activity of slow os-
cillations is crucial to prevent AD progression. Therefore, 
amyloid impairs neuronal circuits, such as those generat-
ing gamma and slow oscillations, while disruptions in os-
cillatory activity further exacerbate amyloid aggregation, 
resulting in a vicious feedback loop that ultimately leads to 
breakdown of neuronal networks.

In addition to shedding light onto the mechanisms of AD 
progression, use of optogenetics can provide insight into 
the best strategies aimed to tackle neuronal activity disrup-
tions in AD patients. Use of noninvasive brain stimulation 
methodologies, such as Transcranial Magnetic Stimulation 
(TMS) and transcranial direct current stimulation (tDCS) 
have shown great promise in treatment of Parkinson’s dis-
ease and neuropathic pain among other disorders. These 
tools provide promising venues for future treatment op-
tions for AD patients. However, it will be important to de-
termine the stage of the disease progression at which these 
treatments will be most effective. Also the patterns of stim-
ulation and the specific brain regions targeted will have to 
be carefully selected to maximize benefit to risk ratio. Use 
of optogenetics in animal models of AD will provide great 
insight into these questions that will help streamline clini-
cal trials using TMS and tDCS.

In conclusion, neuronal activity disruptions comprise an 
early event and an integral part of the progression of AD. 
Use of optogenetics has supplied a valuable tool to inves-
tigate the pathology and progression of AD as well as the 
potential to provide insight into the design of treatments 
intended at restoring neuronal activity disruptions.

https://en.wikipedia.org/wiki/Microbial_rhodopsin
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