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The growing worldwide epidemic of obesity and relat-
ed chronic diseases are characterized by impairment in 
the homeostatic regulation of energy balance. Substantial 
evidence indicates that the brain, in particular the hypo-
thalamus, plays a fundamental role in this process [1]. The 
hypothalamus is a critical regulator of a vast array of phys-
iological and behavioral functions, including food intake 
and energy expenditure, satiety, body temperature, repro-
ductive physiology, and also circadian rhythms. This brain 
region is composed of various heterogeneous nuclei that 
together integrate peripheral nutrient and hormonal sig-
nals and orchestrate adaptive physiological responses. The 
hypothalamic arcuate nucleus (ARC) contains two neuronal 
populations essential for the regulation of food intake: the 
anorexigenic pro-opiomelanocortin/cocaine and amphet-
amine-regulated transcript (POMC/CART) neurons, which 
decrease food intake, and the orexigenic neuropeptide Y/
Agouti-related protein (NPY/AgRP) neurons, which pro-
mote food intake [2]. These “first-order” neurons respond 
directly to peripheral signals and project to other nuclei of 
the hypothalamus, and in turn to other brain areas, to en-

sure the maintenance of physiological conditions [3]. Con-
sumption of high fat diets leads to the disruption of these 
hypothalamic neuronal circuits and the inability to respond 
appropriately to fluctuations in energy availability, thus 
contributing to the development of metabolic dysfunction. 
This is characterized by the activation of several inflamma-
tory and stress pathways [4], leading to hypothalamic in-
jury [5], and also to impaired insulin and leptin sensitivity 
[6].

Given the exponential growth of metabolic disorders and 
the associated economic burden, there is an urgent need 
to develop novel therapeutic approaches for these condi-
tions [7]. The mammalian sirtuins have emerged in recent 
years as potential targets to prevent or counteract metabol-
ic disorders [8]. Sirtuins are a highly conserved family of  
NAD+ dependent deacetylases, with seven isoforms (SIRT1-
7) [9]. The activity of these enzymes is regulated by fluc-
tuations in nutritional availability. In general, NAD+ levels 
increase in response to caloric restriction, fasting, and ex-
ercise, consequently promoting sirtuin activation [10]. In 
contrast, under conditions of energy excess, such as obesi-
ty, NAD+ levels drop and sirtuin activity decreases. Sirtuins 
have a ubiquitous distribution, being widely expressed in 
several peripheral tissues, such as the liver, adipose tissue 
and skeletal muscle, and are also abundantly expressed in 
the central nervous system [11]. Moreover, sirtuins display 
distinct subcellular localization, with SIRT1, 6 and 7, pre-
dominantly localized in the nucleus, SIRT3, 4 and 5, present 
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in mitochondria, and SIRT2 mainly localized in the cytosol.

Research over the past 15 years has firmly established 
the mammalian sirtuins as major players in sensing and co-
ordinating stress responses and has implicated these pro-
teins in age-related diseases, such as metabolic disorders, 
cancer, and neurodegeneration [12]. Besides their well-
known roles in peripheral tissues, sirtuins have also been 
reported to play a crucial role, mainly related to metabolic 
regulation, in the CNS [11]. SIRT1 is the best characterized 
of all mammalian sirtuins. This enzyme has been shown to 
be involved in feeding control and to have a protective effect 
against metabolic imbalance [13]. SIRT1 overexpression in 
forebrain, particularly in striatum and hippocampus, caused 
an increase in fat accumulation accompanied by a decrease 
in energy expenditure [14]. SIRT1 activity modulation in 
the brain also lead to a decrease in AgRP neurons activity 
and promoted the inhibitory output of POMC neurons [15]. 
Moreover, SIRT1 deficiency in POMC neurons [16], and in 
steroidogenic factor-1 (SF-1) neurons [17], caused a posi-
tive energy balance, with an increase in body weight and an 
impairment in energy expenditure. SIRT3, which has criti-
cal roles in mitochondrial function, was shown to regulate 
neuronal activity in response to metabolic stress, induced 
by exercise and caloric restriction [18]. Deletion of nuclear 
SIRT6 caused the development of obesity through an absent 
regulation of chromatin structure and gene expression by 
its deacetylase activity [19].

Taken together, these results support the modulation of 
mammalian sirtuins activity as a potential strategy to pre-
vent or treat metabolic disorders [20]. Several pharmaco-
logical sirtuin activators, such as the natural polyphenolic 
compound resveratrol or synthetic molecules such as pyri-
dine derivatives, have already been tested [21], but further 
studies are required to fully understand the central meta-
bolic roles of sirtuins and the homeostatic impact of their 
modulation.
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