ECRONICON OPEN ACCESS

Systematic Review of Reproductive Disorders in Ruminants Linked to Bacteria *Coxiella burnetii* in Africa during the Last Ten Years (2014-2023)

Mama Agnes Tea^{1,2,3}, Dieudonné Tialla^{2,3}, Martin Bienvenu Somda^{3,4} and Lanan Wassy Soromou^{1,5*}

¹Higher Institute of Veterinary Sciences and Medicine/Dalaba, BP 09 Dalaba, Guinea

²Microbiology-Epidemiology, Zoonosis and One Health Laboratory (LMEZOH), Infectious and Parasitic Diseases Research Laboratory (LR-MIP), Unit of Epidemic-Prone Diseases, Emerging Diseases and Zoonosis (UMEMEZ), National Reference Laboratory for Influenza (LNR-G), Department of Biomedical and Public Health, Health. Science Research Institute (IRSS), National Center for Scientific and Technological Research (CNRST), 03 BP 7047 Ouagadougou 03, Burkina Faso

³Institute for Rural Development (IDR), Nazi BONI University (UNB), 01 BP 1091 Bobo-Dioulasso 01, Burkina Faso

⁴International Center for Research and Development on Subhumid Livestock (CIRDES), BP 559, Street 5-31 Avenue of Governor Louveau, Bobo-Dioulasso, Burkina Faso

⁵University of Labé, BP 210 Labé, Guinea

*Corresponding Author: Lanan Wassy Soromou, Department of Applied Biology, University of Labé, BP 210 Labé, Guinea.

Received: November 25, 2024; Published: January 08, 2025

Abstract

Background: *C. burnetii* is a zoonotic bacterium responsible for Q fever, with domestic ruminants being the main reservoirs and source of transmission of the bacterium to humans. To date, there is very little data in Africa regarding the association of *C. burnetii* with reproductive disorders in ruminants. This systematic review highlights the data from Africa over the last ten years (2014-2023) of *C. burnetii* in association with reproductive disorders in domestic ruminants in order to guide researchers' efforts in future research in African countries in order to better understand the current situation and identify gaps in existing knowledge.

Methods: A literature review was conducted using PRISMA criteria in two search databases publish or perish, and researchrabbit and also with search engines, Cochrane, PubMed, Web of Science, Scopus, semantic scholar, google scholar, crossref as well as Medline to search for documents published in Africa between 2014-2023 on the association of *C. burnetii* with reproductive disorders in domestic ruminants. Different diagnostic methods (ELISA and PCR test) were used to identify *C. burnetii* in samples of aborted animals and other parturient products.

Results: For this systematic review, a total of 20 articles were eligible. These articles are distributed as follows: 10 articles were carried out in North Africa, 05 in East Africa, 04 in Southern Africa and 01 in West Africa. No data in Guinea concern the association of *C. burnetii* with reproductive disorders in domestic ruminants. Different prevalences of antibodies to *C. burnetii* were observed with an overall abortion percentage of 16.1%. *C. burnetii DNA* was identified in aborted animals and gave 20% in sheep and 22.56% in cattle. Stillbirths were 65% in sheep and 10% in goats. *C. burnetii* was observed in fourteen placental tissues (19.1%) in cattle.

Conclusion: In view of the research on the insufficiency of data in West Africa, particularly in Guinea, it would be wise to explore Q fever, a disease that is both abortive and zoonotic, in order to include it in the list of diseases requiring mandatory notification in order to improve epidemiological surveillance in public health.

Keywords: Reproductive Disorder; C. burnetii; Domestic Ruminants; Africa 2014-2023

Abbreviations

iELISA: Indirect Enzyme-Linked Immunosorbent Assay; PCR: Polymerase Chain Reaction

Introduction

C. burnetii, responsible for Q fever, is a bacterium identified as Gram-negative [1,2]. Its global distribution is vast, with the exception of New Zealand [3-5]. According to the European Food Safety Authority (EFSA), the World Health Organization (WHO), the Food and Agriculture Organization of the United Nations (FAO), and the Center for Disease Control and Prevention (CDC), Q fever is an emerging infectious disease [6,7]. This disease often presents asymptomatically, which can complicate diagnosis [8]. However, *C. burnetii* has been identified in fetal membranes, amniotic fluids, and vaginal mucus in several domestic mammals, causing enormous economic losses and posing risks to human health [4,5].

In North Africa, a study conducted in Egypt gave a positive result in placental tissue, i.e. a prevalence of 0.9% in sheep and 3.4% in goats [11]. In South Africa, a seropositivity of *C. burnetii* was observed in aborted samples of 0.9% (95% CI: 0.3-1.7), with sheep 1.9% (95% CI: 0.6-4.4) having the highest seropositivity, followed by cattle 0.7% (95% CI: 0.09-2.6), while all goats 0.0% (95% CI: 0.0-4.2) tested were negative [12]. In Ethiopia, a study found that 20% (95% CI 12.74, 27.26) of sheep had recently undergone abortion, lamb losses were 65% (95% CI 56.34, 73.65) and stillbirths were 10% (95% CI 4.55, 15.44) [13]. According to the same source, neonatal losses were higher in *C. burnetii positive herds.* and *Toxoplasma gondii.*

Data from West Africa, even less from Guinea, on the association of *C. burnetii* reproductive disorders over the past ten years are very inadequate. This review was conducted to shed light on this zoonotic disease and to highlight the inadequacies for research perspectives on *C. burnetii infection* with a view to better epidemiological management.

Materials and Methods

Scientific research and selection criteria

A bibliographic search was carried out in two scientific databases (harzing's publish or perish and researchrabbit) with the search engines Cochrane, PubMed, Web of Science, Scopus and semantic scholar, as well as Medline and CrossRef. The terms used in the search bar were «Q fever», «Q fever», « Coxiellosis «, «*C. burnetii*», «reproductive disorder», «abortion», «stillbirth», «stillbirth», «infertility» «metritis/endometritis», and «retained placenta». The target population was cattle, sheep and goats. This literature search was particularly interested in research carried out on reproductive disorders due to *C. burnetii* in domestic ruminants. For greater precision, the search was focused on studies carried out in Africa during the last ten years (2014-2023). Following these searches, relevant articles were selected and analyzed to extract information relating to the correlation of *C. burnetii* with reproductive disorders in domestic ruminants.

The articles selected for this systematic review were publications that met the following query: Africa in all its parts, the year of research, the nature of the samples, reproductive disorders, domestic ruminants. The bibliographic search obtained through the various databases provided 356 articles and theses related to Q fever. 68 articles were eliminated because they did not meet the search criteria. 288 articles remained, but after carefully examining the titles, abstracts, country and especially the year of publication, 258 of these articles were deemed inappropriate and were therefore omitted from the analysis.

Results and Discussion

From the bibliographic search, twenty (20) articles actually met the inclusion criteria and were therefore taken into account in this systematic review. The 20 articles admitted were distributed in the different regions of Africa.

Citation: Mama Agnes Tea., *et al.* "Systematic Review of Reproductive Disorders in Ruminants Linked to Bacteria *Coxiella burnetii* in Africa during the Last Ten Years (2014-2023)". *EC Microbiology* 21.1 (2025): 01-16.

03

Characteristics of the works included in the review

In this review, several serological tests (indirect, commercial and competitive enzyme-linked immunosorbent assay (ELISA)) and molecular tests (multiplex real-time polymerase chain reaction (RT -PCR)) were used to establish the etiology of outbreaks of abortion, stillbirth, stillbirth, infertility, metritis/endometritis and placental tissues to detect *C. burnetii* as a bacterium responsible for reproductive disorders in ruminants. The domestic ruminant species were cattle, sheep and goats. In these studies, the DNA of *C. burnetii* has been found in samples of aborted fetuses (livers, spleens,) ovarian tubes, vaginal and placental swabs, kidneys, lymph nodes, abdominal contents, whole blood and sera of cattle, sheep and goats.

Of the articles retained after review, 10 articles were conducted in North Africa, 05 in East Africa, 04 in Southern Africa and 01 in West Africa. From the analysis of table 1-4, we note a gap of information to be filled on the association of C. burnetii to reproductive disorders in domestic ruminants over the last ten (10) years, particularly in Guinea. Table 5 provides information on the distribution and immunity of *C. burnetii* in Guinea.

Authors	Title	Methods	Results	Contribution	Limit
[14]	Serosurvey of se- lected repro- ductive patho- gens in domestic ruminants from Upper Egypt	Competition ELISA Tests	<i>C. burnetii</i> seropositivity was detected in 17.3% (68/392; 95% CI: 13.6- 21.1%) of sampled rumi- nants, with seropositiv- ity of 29.2% (38/130) in goats, 19.4% (25/129) in sheep, and 4.7% (5/106) in cattle.	This study high- lights the impor- tance of improv- ing surveillance programs for the circulation of reproductive pathogens at the household- human interface and the role of implementing strict hygiene and biosecurity measures to con- trol infection in Upper Egypt.	Further molecular and epi- demiological studies on the large-scale circulation of these reproductive pathogens are needed to investigate both their economic and productive impact as well as the health implications for animal and human health in Egypt.
[15]	Seroprevalence and risk factors of the main abortive infec- tious agents of cattle in batna	ELISA and PCR test	The prevalence of antibodies against <i>Brucella</i> spp, <i>C. burnetii</i> and <i>Chlamydia abortus</i> were 28.6% (127/437; 95% CI, 24.2-34.6%), 13.3% (46/344; 95% CI, 9.8-17.8%), and 1.45% (4/344, 95% CI, 0.6-3.2), respectively. At the herd level, <i>C. burnetii</i> and <i>Chlamydia abor- tus</i> were observed in 11/22 (50.0%; 95% CI, 25.0-89.5%) and 4/22 (18.1%; 95% CI, 5.0- 46.6%) respectively	NS	The lack of transboundary epide- miological and molecular studies on abortifacient pathogens in ruminants in North Africa is of concern for human and animal health as well as wildlife conser- vation and further research is warranted.

04

		,	1		1
[16]	Abortive dis- eases and their various associat- ed risk factors in small ruminants in Algeria: a sys- tematic review	Test methods for PPR: c-ELISA and RT-PCR	Prevalence of vari- ous abortive diseases in small ruminants in Algeria	Overview of the prevalence of causes of abor- tion in Algerian small ruminants.	Differences between sampling techniques Climate influence and diagnostic tests
[17]	Prevalence and factors associat- ed with a higher or lower risk of exposure to <i>Coxiella burnetii</i> , <i>Chlamydia abor- tus</i> and <i>Toxo-</i> <i>plasma gondii</i> in dairy cows that have aborted in Algeria	Elisa test	8.4% (31/368) for <i>C.</i> burnetii and 12.2% (45/368) for <i>C. abortus</i> and 13.8% (51/368) for <i>T. gondii</i>	This study made it possible to determine the serological preva- lence (by the ELISA method) of Q fever, chlamyd- ia abortion and toxoplasmosis, at the individual and herd level, in dairy farms in northern Algeria.	Follow up this epidemiological study on a larger scale, using PCR for more specific identifica- tion of the agents involved in abortion
[18]	Genotyping of Coxiella burnetii detected in placental tissues from aborted dairy cattle in the north of Algeria.	Real-time quantitative polymerase chain reaction (qPCR) targeting two different genes, IS1111 and IS30 A.	Fourteen placental tis- sues (19.1%) were posi- tive for <i>C. burnetii</i>	NS	Human infection with Q fever is not a reportable disease.
[19]	Molecular and serological data supporting the role of Q fever in abortions of sheep and goats in northern Egypt	Indirect ELISA test and specific real-time PCR (Rt -PCR	The ELISA study was not significant (P = 0.072), it was 22.7% and 12.5% in sheep and goats, On the other hand, for the Rt -PCR test it was significant (P = 0.01), it was 33.6% and 16.3% in sheep and goats,	Overview of the current cause of Q fever in domes- tic small rumi- nants in Egypt	Developing an epidemiological survey for Q fever in other gover- norates of Egypt
[11]	The burden of <i>Coxiella burnetii</i> among aborted dairy animals in Egypt and its public health implications	ELISA test and PCR test	Only one goat gave a positive result in both placental tissue and vaginal discharge, with an overall prevalence of 0.9%, while in goats it is 3.4%. In addition, the seroprevalence of <i>C. bur</i> <i>n etii IgG antibodies</i> in the individuals examined was 19%.	<i>C. burnetii may</i> <i>play a role in</i> <i>abortions in</i> dairy goats rather than other dairy animals in Egypt, although its public health im- plications cannot be dismissed.	NS

[20]	A sero-survey of major infec- tious causes of abortion in small ruminants in Morocco	The Rose Bengal test and the indi- rect ELISA test	Ten herds (43%) were positive for brucellosis, 21 (91%) for chlamydia, 17 (74%) for toxoplas- mosis, 13 (57%) for Q fever and 5 (22%) for leptospirosis	NS	Systematic use of a diagnostic laboratory for the search for abortive infections.
[21]	Abortions in Cattle on the Level of Tiaret Area (Algeria)	ELISA test	Q fever 23.91%, toxo- plasmosis 15.21%, brucellosis 6.52%, neosporosis 2.17% and chlamydia 0%	NS	NS
[22]	Survey of Infec- tious Etiologies of Bovine Abor- tion during Mid - to Late Gestation in Dairy Herds	Real-time PCR	The DNA of <i>Campylo- bacter</i> spp. and C. <i>bur- netii</i> were not present in the veterinary samples studied	This study high- lighted the notion of co-infection, which underlines the great interest of a differential diagnosis of the different causes of abortion.	NS

Table 1: Work carried out on the association of the Coxiella bacteria burnetii to reproductive disorders in domestic ruminants in North

Africa from 2014 to 2023.

Authors	Title	Methods	Results	Contribution	Limit
[23]	Q fever and toxo-	ELISA test and	C. burnetii seropositiv-	The study dem-	Only the DNA of the patho-
	plasmosis in South	polymerase chain	ity was 0.9% (95% CI:	onstrated the	gen and not the disease
	African livestock	reaction detection	0.3-1.7), with sheep	presence of the	was detected. However, the
	and wildlife: a	(PCR)	(1.9%; 95% CI: 0.6-4.4)	causative agents	bacteria was confirmed by
	retrospective study		having the highest	of Q fever and	sequencing. Some of the
	on seropositivity,		seropositivity, followed	toxoplasmosis in	tissues are those that have
	sporadic abortion,		by cattle (0.7%; 95%	South Africa, laying	tested negative for other
	and stillbirth cases		CI: 0.09-2.6), while all	the foundation for	abortive pathogens such as
	in livestock caused		goats (0.0%; 95% CI:	further studies on	brucellosis and chlamydia.
	by Coxiella burnetii		0.0-4.2) and wildlife	these zoonoses. Q	
			(0.0%; 95% CI: 0.0-2.5)	fever and toxoplas-	
			tested were negative.	mosis are impor-	
			Of 11 animals tested	tant and should be	
			for <i>C. burnetii,</i> 10	monitored regularly	
			(91.0%) were positive		

06

[24]	A novel multiplex qPCR -HRM assay for the simultane- ous detection of four abortive zoonotic agents in cattle, sheep, and goats	real-time poly- merase chain reac- tion (qPCR) based on high- resolution melting curve (HRM) analysis	<i>C. burnetii</i> (47.05% GC content, 121 bp), <i>Lep- tospira</i> spp. (43.22% GC content, 77 bp) and <i>L. monocytogenes</i> (42.86% GC content, 93 bp).	Detecting individual infections and co- infections with zoo- notic abortifacients in ruminants.	NS
[25]	Investigation of the outbreaks of abor- tions and orchitis in livestock in Namibia during 2016-2018	PCR tests	The fetuses were all negative for Brucella spp., C. burnetii, Chla- mydia spp., Listeria monocytogenes, Sal- monella spp., Cam- pylobacter fetus spp., pathogenic strains of Leptospira, bovine viral diarrhea virus, Rift Valley fever virus, Ana- plasma phagocytophi- lum and bovine herpes virus 4 Campylobacter fetus spp. and Tricho- monas foetus Spp	NS	NS
[26]	Sero-Epidemiologi- cal Study of Selected Zoonotic and Abor- tifacient Patho- gens in Cattle at a Wildlife-Livestock Interface in South Africa	Immunosorbent Kits (ELISA) (IDEXX, Liebefeld -Bern, Switzer- land)	The seroprevalence (and 95% CIs) of <i>C.</i> <i>burnetii, T. gondii, C.</i> <i>abortus, N. caninum,</i> and RVFV were 38.0% (31.0-45.5%), 33.2% (26.4-40.5%), 20.7% (15.0-27.2%), 1.6% (0.3-4.7%), and 0.5% (0.01-3.0%), respec- tively.	Pathogens, with the exception of RVF virus, are either documented for the first time in cattle in South Africa or at the wildlife- livestock interface for the first time in over 30 years	NS

 Table 2: Work carried out on the association of the Coxiella bacteria burnetii to reproductive disorders in domestic ruminants in southern

 Africa from 2014 to 2023.

07

Authors	Title	Methods	Results	Contribution	Limit
[27]	Neglected zoonotic bac- teria causes and associ- ated risk factors of cattle abortion in different agro- ecological zones of southwest Ethiopia	Indirect ELISA test	The prevalence of abor- tion in cattle was found to be 22.56% (95% CI: 18.74-26.38) in the study areas. <i>Leptospira Hardjo</i> (OR = 1.8, 95% CI: 1.04- 3.00), <i>C. burnetii</i> (OR = 2.7, 95% CI: 1.26 to 5.62) and <i>Brucella abortus</i> (OR = 9.8, 95% CI: 1.27 to 17.15) were all associ- ated with the occurrence of abortions in cattle, as were their co-infections (OR = 8.1, 95% CI: 1.28 to 39.33).	This research dem- onstrated that there is a high prevalence of bovine abortion in the region, indicat- ing that it is one of the major contribu- tors to loss of cattle production.	NS
[28]	Apparent prevalence of brucellosis, Q- fever and toxoplasmosis in aborted goat's at North Shoa, Ethiopia	Rose Bengal precipitation test (RBPT) and indirect ELISA tests	64.7% and 8.6% of them were positive for Q fever and toxoplasmosis, respectively, but none of them were positive for brucellosis	NS	More detailed studies using more sensitive diagnostic tests to examine the full extent of the problem in small ruminant populations
[29]	Prospective cohort study reveals unexpected aetiologies of livestock abortion in northern Tanzania	Indirect ELISA test and PCR, qPCR and RT-PCR test	<i>C. burnetii</i> , which was detected by qPCR with a cycle threshold (Ct) value < 40 in 16 (22.5%) of 71 cattle, 24 (24.5%) of 98 goats, and 12 (27.3%) of 44 sheep, but only six (11.5%) of these 52 ani- mals met the study case definition (Ct \leq 27) for C. <i>burnetii</i> as a presumed etiology of abortion	The results signifi- cantly add to current knowledge in sub-Saharan Africa, providing important evidence from which to prioritize disease interventions.	NS

					08
[30]	Causes and Flock Level Risk Factors of Sheep and Goat Abortion in Three Agroecology Zones in Ethiopia	Immunosorbent assays (ELISA)	 76.23% of sheep and goat flocks tested positive for one or more abortion- causing agents, namely <i>C. burnetti, C. abortus,</i> <i>Brucella</i> spp. and <i>T. gondii</i>; mixed infection was found in 44.39% of the 223 flocks tested. This study revealed an overall annual abortion rate of 16.1% in females and 12.5% in ewes. 	This study provided important informa- tion on the occur- rence, causes and risk factors of abor- tion in small rumi- nants in smallholder farming systems in Ethiopia.	NS
[13]	Risk factors for repro- ductive disorders and major infectious causes of abortion in sheep in the highlands of Ethiopia	Rose Bengal precipitation test (RBPT) and indirect ELISA tests	The study found that 20% [95% CI 12.74, 27.26] of flocks had recently expe- rienced sheep abortion, lamb losses were 65% [95% CI 56.34, 73.65] and stillbirths at 10% [95% CI 4.55, 15.44]. Neonatal losses were higher in <i>C.</i> <i>burnetii</i> and <i>Toxoplasma</i> <i>gondii</i> positive herds,	The study demon- strated the impor- tance of reproduc- tive failures in sheep in different districts of Ethiopia and the probable contribu- tion of different infectious agents to these reproductive disorders.	Further epi- demiological field studies and targeted intervention are needed.

 Table 3: Work carried out on the association of the Coxiella bacteria burnetii to reproductive disorders in domestic ruminants in East Africa

 from 2014 to 2023.

Authors	Title	Methods	Results	Contribution	Limit
[31]	Q fever in the	The indirect	The apparent	NS	Disease detection in
	peri-urban area of	ELISA test	"animal" serop-		humans and an efficient
	Ouagadougou in		revalence and the		control strategy are
	Burkina Faso: sero-		"herd" prevalence		therefore necessary to
	prevalence in dairy		were 26.2% and		improve public health.
	cows, knowledge		60% respectively.		The implementation
	and behaviors at				of an integrated "One
	risk of zoonotic				Health" approach must
	transmission of				be considered.
	this zoonosis in				
	cattle herds				

 Table 4: Work carried out on the association of the Coxiella bacteria burnetii to reproductive disorders in domestic ruminants in West

 Africa from 2014 to 2023.

09

			Ме	thodology				
Authors	Title	Areas and year of study	Number and nature of samples examined	Analysis tech- nique	Target Species	Results	Article Limit	Year of publica- tion
[32]	New data about im- mune level strats of the guinea popu- lation republic to the cause of CU fever	Republic of Guinea (Lower Guinea, Middle Guinea, Up- per Guinea and Forest Guinea) 2015-2019	2346 serum samples distributed across the four regions of Guinea	Enzyme- Enriched Immu- noassay (ELISA)	Primates (Men)	Nationwide, <i>C. burnetii</i> -specific im- munoglobu- lins were recorded in 124 of 2346 sera, or 5.3%.	Study the share of Q fever in the total structure of fevers recorded in Guinean ter- ritory Assess the impact of the bacteria on the main sources of infection	2021
[33]	Epidemiol- ogy of Zoo- notic <i>Coxiella</i> <i>burnetii</i> in The Republic of Guinea	Kindia Region/ Guinea 2019-2020	750 small mammals and 9,620 ticks	Real-time poly- merase chain reaction (RT-PCR)	Ticks collected from small mammals and cattle	11 out of 750 small mam- mal samples (1.4%) and in 695 out of 750 tick samples (1.4%). 9,620 (7.2%). The high number of infected ticks (7.2%)	Understand- ing the role of ticks in the epide- miology of <i>C. burnetii</i> in Guinea.	2023
[34]	Serop- revalence of brucellosis, Q fever and Rift Val- ley fever in domestic ruminants in Guinea in 2017-2019	17 pre- fectures: Beyla; Boffa; Boke; Coyah; Dab- ola; Dalaba; Faranah; Forécariah; Gaoual; Gueckedou; Kindia; Koundara; Kouroussa; Macenta; Mamou; Mandi- ana and N'zérékoré. 2017-2019	1357 domestic ruminants	immuno- sorbent assay (ELISA)	Domestic ruminants	In all domes- tic ruminants the three pathologies, out of 1357 samples, 262 sera were positive distributed between domestic ruminants and the three diseases	Investigating the mecha- nisms of interference between infections by longitudinal monitoring of selected livestock in different ecological zones of Guinea	2022

10

[35]	Contribu-	4 prefec-	817 blood	Indirect	The Men	Examination	Investigating	2022
	tion to the	tures of	samples were	ELISA		of a total of	this zoonotic	
	study of the	Guinea	taken from	technique		817 human	pathology is	
	biological di-	(Kindia,	humans	was used		blood sam-	a necessity	
	agnosis of Q	Kissi-		for the		ples yielded	to reduce its	
	fever in hu-	dougou,		detection		a total	prevalence.	
	mans in the	Guécké-		of class G		prevalence of	Further sero	
	prefectures	dougou and		immuno-		5.75%.	-epide-	
	of Kindia,	N'zérékoré		globulins			miological	
	Kissidougou,	2017-2020		(IgG)			research	
	Guécké-			in the			on Q fever	
	dou and N'			collected			in cattle	
	Zérékoré			blood and			and ticks,	
	(Republic of			direct			which are	
	Guinea)			ELISA			risk factors	
	,			technique			for zoonotic	
				was used			transmission	
				for the			in rural com-	
				search for			munities.	
				C. burnetii				
				antigen.				
				And the				
				PCR				
				method				
[36]	Detection	Republic	204 tick sam-	PCR	Ticks	Genetic	Coxiella	2019
[00]	Coxiella	of Guinea	ples collected	(initial		material of	infection	
	hurnetii в	(Boké and	from cattle	denatur-		the causative	outbreaks	
	клешах.	Kindia		ation at		agent of O	on farms in	
	собранных	2018		95°C for 5		fever was not	the country	
	скрупного			minutes.)		detected in	and the risk	
	rogate skota.					more than	of infection	
	on territory					5% of the	by fever	
	nekotorykh					total number	by level	
	Provincia					of samples		
	Gvineisky					studied		
	Respirators					Staarda		
[37]	Demonstra-	Republic	786 bovine	The	Cattle	Analysis of	Conduct	2022
r. 1	tion of the	of Guinea	blood samples	indirect		786 bovine	large-scale	
	circulation	(Kindia	I I I I I I I I I I I I I I I I I I I	Enzvme		blood sam-	studies	
	of Coxiella	and Forest		Linked		ples detected	across the	
	burnetii (a	Guinea).		test		385 samples	country	
	fever agent)			Immuno-		positive for	J	
	in cattle in			sorbent		C. burnetii. or		
	kindia and			Assav		48,98%.		
	in guinea			(ELISAi)		10.2070		
	forester			was used				
				and PCR				

11

		r				1	r	
[38]	Identifica-	Lower	1,074 animal	Enzyme-	Cattle	Analysis of	Continue to	2022
	tion of	Guinea, Up-	serum samples	linked		1,074 animal	study the	
	the Farm	per Guinea,		immuno-		serum sam-	circulation	
	Animals	Middle		sorbent		ples yielded	of zoonotic	
	Immune to	Guinea		assay		172 positive	and anthro-	
	Pathogens	and Forest		(ELISA)		cases, or	pozoonotic	
	of Zoonotic	Guinea				16.0%.	pathogens in	
	Infectious	(2017-					the terri-	
	Diseases in	2020)					tory of the	
	the Republic						Republic of	
	of Guinea						Guinea and	
							organize	
							regular	
							monitoring	
							of the spread	
							of zoonotic	
							infectious	
							diseases in	
							collabora-	
							tion with	
							veterinary	
							services	

Table 5: Work on Q fever carried out in Guinea which only concerns the distribution and immunity of Coxiella burnetii.

Abortion

Abortion is defined as the interruption of gestation with expulsion of a non-viable fetus or a dead fetus (between the 42nd and 260th day of gestation in cows) [35,36]. These reproductive losses significantly impact not only the income of breeders, the cattle industry to maintain itself but also signal a possible health problem due to various zoonotic agents [41,42]. In an experimental research carried out in France, 11 heifers subjected to an intradermal experiment with doses of a suspension of *C. burnetii* (strain C9), 45% aborted and in the group of controls, only 19% aborted [43]. Analyses carried out by molecular methods on 50 samples of abomasal swabs from aborted fetuses of sheep and goats identified *C. burnetii* in 26% of the samples [10]. Another study carried out on 146 samples collected, 36 samples (24.7%) were positive for *C. burnetii* [44]. In cases of abortion by *C. burnetii*, while the expelled fetus has no specific macroscopic abnormalities, placental abnormalities range from mild to severe [45].

Intrauterine dynamics of C. burnetii infection

In vertebrates, the presence of *C. burnetii* leads to the recruitment of monocytes that cross the vascular endothelium and promotes the development of granulomas in affected organs [46]. Placentitis, an inflammatory reaction of the placenta, can be recognized visually by an increase in the thickness of the intercotyledonary areas accompanied by a distinct non-pigmented exudate [47]. However, it appears that these placental irregularities are less frequent in cases of abortions induced by *C. burnetii* in cattle than in small ruminants [48]. The histopathological features of placentas positive for *Coxiella* immunohistochemical tests showed infiltration of the chorionic stroma by mononuclear cells as well as necrosis of chorionic trophoblasts and focal exudation of fibrin [49].

Puerperal pathologies

Uterine function is often compromised in cattle by bacterial contamination of the uterine mucosa after parturition and the pathogens persist and often cause uterine inflammation, which is a major cause of infertility in cattle [50]. Several pathologies have been associated

with postpartum conditions such as metritis or endometritis, retained placentas and mastitis in domestic ruminants [51]. However, with regard to *C. burnetii* infection, there is no known evidence, according to Agerholm [48], no exact evidence describing an association between *C. burnetii* infection and postpartum illnesses.

Placental retention

Non-delivery refers to the retention of fetal envelopes in the uterine cavity after the expulsion of the fetus in cows within 24 hours of parturition. It can be total or partial. Non-delivery can be attributed either to the inertia of the uterine muscle, to pathological adhesion of the placenta, to a mechanical obstacle hindering the exit of the envelopes or to an excessive volume of the placenta [52]. A significant increase in the frequency of adnexal retention can be observed in domestic ruminants, more precisely in cows, which are not free from diseases. In addition, various pathogens related to uterine infections have been shown to correlate with increased rates of placental retention [53]. The precise mechanisms by which infectious agents trigger retained appendages remain largely unclear, which has led to the proposal of multiple hypotheses on this subject. One such hypothesis suggests that uterine infections may cause inflammation between the chorionic villi and uterine crypts, disrupt uterine involution and hormonal changes during the third parturition, and impact the endometrium and/or myometrium through bacterial toxins [54]. The consequences of non-delivery are both health and economic. Retained placenta is a significant risk factor for postpartum metritis in dairy cows, with a prevalence ranging from 92 to 100%. Cows with retained placentas often present with symptoms of acute endometritis [55]. In the chorionic stroma, mild to moderate infiltration of mononuclear cells, as well as necrosis of chorionic epithelial cells and villus tips, leading to neutrophil exudation have been observed [56]. In a fetal placenta histological study, out of 50 cotyledons tested by the molecular method, 10 (20%) were positive for *C. burnetii* DNA [57].

The assessment of the abortive capacity of *C. burnetii* is complex due to its detection in the placenta, postpartum products and vaginal mucus following spontaneous and induced abortions [51]. It is therefore imperative to establish a link between the observed lesions and the presence in the organism to validate *C. burnetii* as a potential cause of fetal pathology.

Metritis or endometritis

Endometritis refers to inflammation of the endometrial lining of the uterus in the absence of systemic manifestations. It is related to persistent uterine infection after parturition caused by pathogenic bacteria [58].

Uterine infections can be characterized based on various criteria, including histo -anatomical location, time of onset, presenting symptoms, and severity. Commonly referred to as endometritis or metritis in severe cases, this condition in dairy cows has a prevalence ranging from 2.5% to 36.5% [55]. Chronic metritis (endometritis) is a condition that negatively impacts reproductive efficiency, leading to decreased lactation and reduced lifespan, either through death of affected cows or premature culling [59]. The identification of *C. burnetii* in uterine secretions is not surprising, as the bacterium has been previously detected in the reproductive tract of asymptomatic animals [60]. Improved research methodologies and precise definitions are essential to combat an infection as widespread as Q fever.

Conclusion

The results of this systematic review allow us to define that *C. burnetii* is associated with reproductive disorders in domestic ruminants. Very little work has been done on this subject in the last ten years in Africa. Diagnostic methods (enzyme-linked immunosorbent assay (ELISA) and real-time polymerase chain reaction (RT-PCR)) have been used to detect *C. burnetii* in samples from aborted fetuses, ovarian tubes, vaginal and placental swabs of cattle, sheep and goats. Despite the importance of *C. burnetii* as a zoonotic disease and its economic impact, there is a significant gap in the scientific literature regarding its link with domestic ruminant reproduction. This systematic review, which highlights the lack of data in Africa as well as the absence of publications in this field in Guinea, suggests research perspectives in order to better understand this disease for better epidemiological surveillance.

Citation: Mama Agnes Tea., *et al.* "Systematic Review of Reproductive Disorders in Ruminants Linked to Bacteria *Coxiella burnetii* in Africa during the Last Ten Years (2014-2023)". *EC Microbiology* 21.1 (2025): 01-16.

Bibliography

- 1. Arricau-Bouvery N and Rodolakis A. "Is Q Fever an emerging or re- emerging zoonosis?". Veterinary Research 36.3 (2005): 327-349.
- Mauermeir M., et al. "Bovine blood derived macrophages are unable to control Coxiella burnetii replication under hypoxic conditions". Frontiers in Immunology 14 (2023): 960927.
- 3. Tissot-Dupont H and Raoult D. "Epidemiology of Q fever". BE 5 (1993): 17-18.
- 4. Kaplan MM and Bertagna P. "The geographical distribution of Q fever". *Bulletin of the World Health Organization* 13.5 (1955): 829-860.
- 5. España PP., et al. "Q Fever (Coxiella burnetii)". Seminars in Respiratory and Critical Care Medicine 41.4 (2020): 509-521.
- 6. Rahravani M., *et al.* "The epidemiological Coxiella survey burnetii in small ruminants and their ticks in western Iran". *BMC Veterinary Research* 18.1 (2022): 292.
- 7. Arricau-Bouvery N and A Rodolakis. "Is Q fever an emerging or re-emerging zoonosis?". Veterinary Research 36.3 (2005): 327-349.
- 8. Škultéty L. "Q fever and prevention". Epidemiologie, Mikrobiologie, Imunologie: Casopis Spolecnosti pro Epidemiologii a Mikrobiologii Ceské Lékarské Spolecnosti J.E. Purkyne 69.2 (2020): 87-94.
- 9. Raoult D., *et al.* "Q fever 1985-1998. Clinical and epidemiologic characteristics of 1,383 infections". *Medicine (Baltimore)* 79.2 (2000): 109-123.
- 10. Borhani R., *et al.* "Molecular investigation of *Coxiella burnetii* in aborted fetus of small ruminants in southeast Iran". *Brazilian Journal of Microbiology* 55.1 (2024): 919-924.
- 11. Khaled A., *et al.* "The burden of *Coxiella burnetii* among aborted dairy animals in Egypt and its public health implications". *Acta Tropica* 166 (2017): 92-95.
- 12. Mangena ML., *et al.* "Q fever and toxoplasmosis in South African livestock and wildlife: a retrospective study on seropositivity, sporadic abortion, and stillbirth cases in livestock caused by *Coxiella burnetii*". *BMC Veterinary Research* 19.1 (2023): 168.
- 13. Gebretensay A., *et al.* "Risk factors for reproductive disorders and major infectious causes of abortion in sheep in the highlands of Ethiopia". *Small Ruminant Research* 177 (2019): 1-9.
- 14. Farag SI., et al. "Serosurvey of selected reproductive pathogens in domestic ruminants from Upper Egypt". Frontiers in Veterinary Science 10 (2023): 267640.
- 15. Guidoum KA. "Seroprevalence and risk factors of the main abortive infectious agents of cattle in Batna". Thesis, Université Ibn Khaldoun-Tiaret (2021).
- 16. Haif A., *et al.* "Abortive diseases and their various associated risk factors in small ruminants in Algeria: a systematic review". *Tropical Animal Health and Production* 53.6 (2021): 520.
- Djellata N., et al. "Prevalence and factors associated with a higher or lower risk of exposure to Coxiella burnetii, Chlamydia abortus and Toxoplasma gondii in dairy cows that have aborted in Algeria". Revue Scientifique & Technique de l'Office International des Epizooties 38.3 (2019): 761-786.
- Rahal M., et al. "Genotyping of Coxiella burnetii detected in placental tissues from aborted dairy cattle in the north of Algeria". Comparative Immunology, Microbiology and Infectious Diseases 57 (2018): 50-54.

- 19. Abdelfattah S., *et al.* "Molecular and serological data supporting the role of Q fever in abortions of sheep and goats in northern Egypt". *Microbial Pathogenesis* 125 (2018): 272-275.
- 20. Benkirane A., *et al.* "A sero-survey of major infectious causes of abortion in small ruminants in Morocco". *Veterinaria italiana* 51.1 (2015): 25-30.
- 21. Abdelhadi FZ., et al. "Abortions in Cattle on the Level of Tiaret Area (Algeria)". Global Veterinaria 14.5 (2015).
- 22. Barkallah M., *et al.* "Survey of infectious etiologies of bovine abortion during mid-to late gestation in dairy herds". *PLOS ONE* 9.3 (2014): e91549.
- 23. Mangena ML., *et al.* "Q fever and toxoplasmosis in South African livestock and wildlife: a retrospective study on seropositivity, sporadic abortion, and stillbirth cases in livestock caused by *Coxiella burnetii*". *BMC Veterinary Research* 19.1 (2023): 168.
- 24. Modise BM., et al. "A novel multiplex qPCR-HRM assay for the simultaneous detection of four abortive zoonotic agents in cattle, sheep, and goats". Scientific Reports 13.1 (2023): 12282.
- 25. Samkange A., *et al.* "Investigation of the outbreaks of abortions and orchitis in livestock in Namibia during 2016-2018". *Tropical Animal Health and Production* 54.6 (2022): 346.
- 26. Adesiyun AA., *et al.* "Sero-epidemiological study of selected zoonotic and abortifacient pathogens in cattle at a wildlife-livestock interface in South Africa". *Vector-Borne and Zoonotic Diseases* 20.4 (2020): 258-267.
- Robi DT., et al. "Neglected zoonotic bacteria causes and associated risk factors of cattle abortion in different agro- ecological zones of southwest Ethiopia". Veterinary Immunology and Immunopathology 259 (2023): 110592.
- 28. Alamerew EA., *et al.* "Apparent prevalence of brucellosis, Q- fever and toxoplasmosis in aborted goat's at North Shoa, Ethiopia". *EUREKA: Life Sciences* 5 (2022).
- 29. Thomas KM., *et al.* "Prospective cohort study reveals unexpected aetiologies of livestock abortion in northern Tanzania". *Scientific Reports* 12.1 (2022): 11669.
- 30. Alemayehu G., *et al.* "Causes and flock level risk factors of sheep and goat abortion in three agroecology zones in Ethiopia". *Frontiers in Veterinary Science* 8 (2021): 615310.
- 31. Tialla D., *et al.* "Q fever in the peri-urban area of Ouagadougou in Burkina Faso: seroprevalence in dairy cows, knowledge and behaviors at risk of zoonotic transmission of this zoonosis in cattlemen". *Revue Épidémiologie et Santé Animale* 79 (2022): 95-102.
- 32. Найденова EB., *et al.* "New days about the level of immune layers of the population of the Republic of Guinea and voice Lihoradki Ku". *Infection and Immunity* 11.1 (2021): 165-170.
- 33. Olesia VO., et al. "Epidemiology of Zoonotic Coxiella burnetii in The Republic of Guinea". Microorganisms 11.6 (2023): 1433.
- 34. Troupin C., *et al.* "Seroprevalence of brucellosis, Q fever and Rift Valley fever in domestic ruminants in Guinea in 2017-2019". *BMC Veterinary Research* 18.1 (2022): 64.
- 35. Barry AA., *et al.* "Contribution to the study of the biological diagnosis of Q fever in humans in the prefectures of Kindia, Kissidougou, Guéckédou and N' Zérékoré (Republic of Guinea)". *International Journal of Biotechnology and Microbiology* 4.2 (2022): 7-12.
- 36. Julia Aleksandrovna Panferova., *et al.* "Detection of *Coxiella burnetii* in ticks collected from large Rogate Skota, on territory Nekotorykh Provincia Gvineisky Republic". *Epidemiology and Infection Diseases* 24.5-6 (2019): 234-239.

Citation: Mama Agnes Tea., *et al.* "Systematic Review of Reproductive Disorders in Ruminants Linked to Bacteria *Coxiella burnetii* in Africa during the Last Ten Years (2014-2023)". *EC Microbiology* 21.1 (2025): 01-16.

37. Barry AA., *et al.* "Demonstration of the circulation of *Coxiella burnetii* (q fever agent) in cattle in India and in guinee forestiere". *World Journal of Pharmaceutical and Medical Research* 8.8 (2022).

15

- 38. Naidenova EV., *et al.* "Identification of the farm animals immune to pathogens of zoonotic infectious diseases in the republic of Guinea". *Problems of Particularly Dangerous Infections* 2 (2022): 101-106.
- 39. Robi DT., *et al.* "Case-control study on risk factors associated with brucellosis in aborted cattle of Jimma zone, Ethiopia". *Iranian Journal of Veterinary Science and Technology* 11.2 (2019): 27-36.
- 40. Salah A and Hamdi A. "Abortion in cattle in the Tiaret region". Thesis, Ibn Khaldoun University TIARET (2017).
- 41. Lucchese L., *et al.* "Seroprevalence study of the main causes of abortion in dairy cattle in Morocco". *Veterinaria Italiana* 52.1 (2016): 13-19.
- 42. Hovingh E. "Abortions in Dairy Cows I: Common Causes of Abortion". Va. Coop. Ext. VCE Blacksbg. VA USA (2009).
- 43. Plommet M., et al. "Experimental Q fever in cattle". Annales de Recherches Vétérinaires 4 (1973): 325-346.
- 44. Mobarez MA., *et al.* "Molecular detection of *Coxiella burnetii* infection in aborted samples of domestic ruminants in Iran". *PloS One* 16.4 (2021): 250116.
- 45. Saegerman C., *et al.* "Diagnosis of *Coxiella burnetii* Cattle Abortion: A One- Year Observational Study". *Pathogens (Basel, Switzerland)* 11.4 (2022): 429.
- 46. Raoult D., et al. "Q Fever during pregnancy: Diagnosis, treatment, and follow-up". Archives of Internal Medicine 162.6 (2002): 701-704.
- 47. Waldhalm DG., et al. "Abortion associated with *Coxiella burnetii* infection in dairy goats". *Journal of the American Veterinary Medical Association* 173.12 (1978): 1580-1581.
- 48. Agerholm JS. "*Coxiella burnetii* associated reproductive disorders in domestic animals -a critical review". *Acta Veterinaria Scandinavica* 55.1 (2013): 13.
- 49. Bildfell RJ., et al. "Coxiella burnetii infection is associated with placentitis in cases of bovine abortion". Journal of Veterinary Diagnostic Investigation 12.5 (2000): 419-425.
- 50. Sheldon IM., et al. "Defining postpartum uterine disease in cattle". Theriogenology 65.8 (2006): 1516-1530.
- LeBlanc S. "Uterine postpartum disease and dairy herd reproductive performance: a review". Veterinary Journal 176.1 (2008): 102-114.
- 52. Belalia A and F Addad. "Bibliographic study on placental retention in cattle". Thesis, IBN KHALDOUN -TIARET (2010).
- Arthur GH, et al. "Veterinary reproduction and obstetrics (7th edition)". Journal of the South African Veterinary Association 68.1 (1997): 15.
- 54. Arthur GH, et al. "Maternal dystocia treatment". Veterinary Reprod. Obstet. W. B. Saunders Phila. Phila (1996).
- 55. Hanzen C. "Uterine infections in cows". Cours Reprod. Bov. Belg. (2009).
- Muskens J., et al. "Prevalence of Coxiella burnetii infections in aborted fetuses and stillborn calves". Veterinary Record 170.10 (2012): 260.

16

- 57. Botta C., et al. "Bovine fetal placenta during pregnancy and the postpartum period". Veterinary Pathology 56.2 (2019): 248-258.
- 58. LeBlanc SJ., *et al.* "The effect of treatment of clinical endometritis on reproductive performance in dairy cows". *Journal of Dairy Science* 85.9 (2002): 2237-2249.
- 59. Talhi Rawiya., et al. "Bovine endometritis and its impact on milk production". SNV.STU, Working Paper (2022).
- 60. Guatteo R., *et al.* "Modalities of Coxiella excretion burnetii by dairy cows: implications for the detection and control of Q fever". *Rencontres Autour Rech Sur Rumin* 6 (2006): 403.

Volume 21 Issue 1 January 2025 ©All rights reserved by Lanan Wassy Soromou., *et al.*