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Abstract
Gene co-expression is the correlation of gene expressions across multiple samples or conditions. Significant gene co-expressions 

have been used to construct gene co-expression networks and used to elucidate biological information. However, the suitability of 
gene co-expressions in predicting protein-protein interaction is not clear. In this study, ten gene co-expression measures were evalu-
ated for its suitability in predicting PPIs in Escherichia coli. Our results show poor precision (precision ≤ 0.00188). This suggests that 
gene co-expression alone is not likely to be suitable to predict protein-protein interactions.
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Introduction

Gene co-expression network (GCN) refers to a network of genes as nodes and the presence of significant co-expression between pairs 
of nodes as edges [1], which has been shown be useful in elucidating important biological information [2]. For example, Reverter., et al. 
[3] used GCN to identify transcriptional regulation of bovine skeletal muscles. Ling [4] examined the overlap between GCN and gene co-
occurrence in literature to identify potential hypotheses for future research. van Dam., et al. [5] used GCN to examine gene-disease asso-
ciation. Recently, Sharma., et al. [6] used GCN to identify key genes in active metabolite biosynthesis of a medicinal plant and Fajardo and 
Quecini [7] used GCN to examine expressional conservation between wild and cultivated grapes. 

Pearson’s correlation is one of the most common measures of gene co-expression, which has been used in many recent studies [8-11]. 
Other measures include Spearman’s correlation [12] and weighted gene co-expression network analysis [13]. However, there are two 
main open questions. Firstly, it is not clear which measure is most suitable. Chay., et al. [14] demonstrated that different measures can im-
pact on estimated genetic distance between organisms using DNA fingerprinting. Secondly, it is not clear whether GCN or which measure 
by which the resultant GCN is constructed is representative of protein-protein interaction (PPI) network derived from experimental data 
despite Piya., et al. [15] suggested substantial overlap between GCN and PPI network after auxin treatment in Arabidopsis. 
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Recently, Rajagopala., et al. [16] published a set of literature supported or experimentally verified PPIs in Escherichia coli. In this study, 
we examine several measures of gene co-expression on its ability in predicting PPIs in E. coli. Our results suggest that although Pearson’s 
correlation is the best performing measure, its ability to predict PPIs is low. This suggests that PPIs cannot be predicted using gene co-
expression.

Materials and Methods

Data Set: Gene expression data set from Faith., et al. [17], containing 266 samples, were downloaded from NCBI Gene Expression Omni-
bus [18] as GSE6836. The CEL files were normalized and the gene expression data were exported using affy package [19]. The probe set 
IDs were converted to Locus Tag IDs and only readings with Locus Tag IDs were used. Binary protein-protein interaction data set from 
Rajagopala., et al. [16] were used. Both microarray probe set IDs and protein IDs [Supplementary Table S5 of Rajagopala., et al. [16] were 
converted to Locus Tag IDs.

Co-expression measures: Nosrmalized gene expressions from GSE6836 were used to generate absolute co-expression measures using 
coexp method in SeqProperties [20]. Ten co-expression measures will be used; namely, (i) Bray and Curtis coefficient [21,22], (ii) Cosine 
coefficient [21,23], (iii) Canberra distance [21,24], (iv) Euclidean distance [21,25], (v) Kendall’s tau [26], (vi) Manhattan distance [21,27], 
(vii) Pearson’s correlation (28,29), (vii) Point biserial correlation [30], (ix) Spearman’s correlation [29], and (x) Tanimoto coefficient 
[21,31]. Each absolute co-expression was statistically tested for significance using randomization test [32]. The mean co-expression of 
1000 random gene expression pairs were generated using coexp_rand method in SeqProperties [20]. Thirty replicates were performed 
to provide the grand mean and standard errors of randomized co-expressions, where standard deviation of randomized co-expressions 
can be estimated as the product of the mean standard errors and square root of 1000. Significant gene co-expressions were filtered from 
gene co-expressions in three ways. Firstly, absolute gene co-expressions higher than 1.645 times of standard deviation above the mean 
of randomized co-expressions were considered significant. Secondly, top 5 percentile of gene co-expressions were considered significant. 
Lastly, top 5 percentile of absolute gene co-expressions were considered significant.

Benchmarking GCN to PPI; Significant gene co-expressions were tabulated against protein-protein interaction from Rajagopala., et al. 
[16] as truth using Locus Tag IDs where true positive, false positive, and false negative would be tabulated; which would be used to calcu-
late precision, recall, and F1-score. 

Results and Discussion

Normalized gene expression data set from Faith., et al. [17]) consists of 4345 genes with Locus Tag IDs, which resulted in a total pos-
sibility of 9,437,340 pairwise gene co-expressions. There are 3923 PPIs in Rajagopala., et al. [16]’s data set, consisting of 2,044 unique Lo-
cus Tag IDs. Of which (Figure 1), 2012 Locus Tags were common in gene expression data set and PPIs, 2333 Locus Tags were found in gene 
expression data set but not PPIs, and 32 Locus Tags were found in PPIs but not gene expression data set. This suggests that PPIs are rare 
in E. coli but is consistent in terms of magnitude to an earlier study using pull-down assays [33]. Using all pairwise gene co-expressions 
against PPIs, the baseline precision and recall are 0.0359% and 87.2%, respectively; which gives a baseline F1-score of 0.072% (Table 2 
to 4). 

Randomization results shows that absolute Pearson’s correlation above 0.749 (0.029 + 1.645 x 0.4378 = 0.749) to be significant (Table 
1), which corresponds to the absolute Pearson’s correlation above 0.75 by Reverter., et al. [3] that coincides with 1% false discovery rate. 
This suggests that randomization can be a suitable procedure to determine a statistically suitable correlation threshold. Using these 
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Figure 1: Common Locus Tags in Data Sets.

Co-expression Measure Grand Mean Standard Error Standard Deviation
Bray and Curtis coefficient 0.900 0.0024 0.0766

Cosine coefficient 0.997 0.0001 0.0047
Canberra distance 26.546 0.5450 17.2355
Euclidean distance 29.620 0.6758 21.3623

Kendall’s tau 0.029 0.0057 0.1810
Manhattan distance 456.742 12.0902 382.3240

Pearson’s correlation 0.029 0.0138 0.4378
Point biserial correlation 0.026 0.0114 0.3608
Spearman’s correlation 0.033 0.0115 0.3644

Tanimoto coefficient 0.942 0.0024 0.0768

Table 1: Distributions for Null Hypotheses for Each Co-Expression Measure.

Co-expression Measure Number of Significant GCNs Precision Recall F1-Score
Baseline 9,437,340 0.00036 0.87217 0.00072

Bray and Curtis coefficient 0 NA NA NA
Canberra distance 891,255 0.00031 0.07101 0.00062
Cosine coefficient 0 NA NA NA

Euclidean distance 730,231 0.00038 0.07025 0.00075
Kendall’s tau 2,098,668 0.00038 0.20199 0.00075

Manhattan distance 637,694 0.00036 0.05905 0.00072
Pearson’s correlation 131,083 0.00188 0.06266 0.00364

Point biserial correlation 576,371 0.00069 0.10168 0.00138
Spearman’s correlation 752,842 0.00053 0.10094 0.00105

Tanimoto coefficient 0 NA NA NA

Table 2: Performance of Co-Expression Measures I. Absolute gene co-expressions higher than 1.645 times of standard deviation above the 

mean of randomized co-expressions are significant.
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Co-expression Measure Precision Recall F1-Score
Baseline 0.00036 0.87217 0.00072

Bray and Curtis coefficient 0.00054 0.06519 0.00108
Canberra distance 0.00023 0.01018 0.00045
Cosine coefficient 0.00063 0.07522 0.00124

Euclidean distance 0.00030 0.02239 0.00060
Kendall’s tau 0.00074 0.08820 0.00146

Manhattan distance 0.00041 0.11609 0.00082
Pearson’s correlation 0.00083 0.09913 0.00164

Point biserial correlation 0.00083 0.09913 0.00164
Spearman’s correlation 0.00070 0.08463 0.00140

Tanimoto coefficient 0.00056 0.06701 0.00111

Table 3: Performance of Co-Expression Measures II. Top 5 percentile of gene co-expressions are significant.

thresholds, our results suggest that Pearson’s correlation is optimal in terms of precision and F1-score (Table 2). 

Using top 5 percentile for co-expression (Table 3) or absolution co-expression (Table 4), our results suggests that both Pearson’s cor-
relation and point biserial correlation are equally suitable as there is perfect correlation (r = 1) between co-expression values calculated 
using Pearson’s correlation or point biserial correlation. Interestingly, Canberra distance which fair worse than baseline in both statisti-
cally determined threshold (Table 2) or co-expression (Table 3) in terms of precision, is a suitable when absolution co-expression (Table 
4) was used. This suggests that the type of threshold and co-expression measure should be considered together. In addition, our results 
suggests that a more stringent threshold is likely to give better precision and F1-score compared to a less stringent threshold (Table 5).

However, our results suggest that all evaluated gene co-expression measures have low precision in predicting PPIs (Tables 2 to 4, 
precision ≤ 0.00188). This suggests that gene co-expression is a poor predictor of PPIs. Several studies have suggested that interacting 

Co-expression Measure Precision Recall F1-Score
Baseline 0.00036 0.87217 0.00072

Bray and Curtis coefficient 0.00054 0.06519 0.00108
Canberra distance 0.00023 0.01018 0.00045
Cosine coefficient 0.00063 0.07522 0.00124

Euclidean distance 0.00030 0.02239 0.00060
Kendall’s tau 0.00060 0.09381 0.00119

Manhattan distance 0.00041 0.11609 0.00082
Pearson’s correlation 0.00063 0.10882 0.00126

Point biserial correlation 0.00063 0.10882 0.00126
Spearman’s correlation 0.00057 0.09151 0.00113

Tanimoto coefficient 0.00056 0.06701 0.00111

Table 4: Performance of Co-Expression Measures III. Top 5 percentile of absolute gene co-expressions are significant.
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proteins are more likely to be expressionally correlated [34,35], especially for permanent interacting proteins such as within ribosomes 
and proteosomes [36]; which is consistent with our results in terms of precision but not recall. This suggests that a large proportion of 
PPIs may not be identified using gene co-expressions. Moreover, the practicality of using gene co-expression to predict PPIs is low due to 
low precision. In spite of this, gene co-expression may be a screening useful tool for other purposes; such as, gene-disease associations 
[5,37,38], and disease subtype classification [39-41].

Conclusion

Ten gene co-expression measures were examined for their applicability to predict PPIs in E. coli. Although Pearson’s correlation con-
sistently outperforms other measures, it has low precision. Hence, gene co-expression measures alone are not suitable to predict PPIs.

Data files for this study can be downloaded at https://bit.ly/GCN_vs_PPI. 
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Percentile Number of Significant GCNs Precision Recall F1-Score
Baseline 9,437,340 0.00036 0.87217 0.00072

> 90 1,518,628 0.00044 0.17155 0.00088
> 91 1,343,990 0.00047 0.15953 0.00093
> 92 1,172,692 0.00049 0.14653 0.00098
> 93 1,003,382 0.00053 0.13507 0.00105
> 94 837,776 0.00058 0.12283 0.00115
> 95 676,166 0.00063 0.10882 0.00126
> 96 519,878 0.00073 0.09684 0.00145
> 97 370,858 0.00090 0.08461 0.00177
> 98 230,883 0.00121 0.07108 0.00238
> 99 105,341 0.00224 0.06011 0.00432

Table 5: Effects of Percentile Threshold using Pearson’s Correlation on Performance. Absolute gene co-expressions were used.
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