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Abstract
Soil associated with plants host various microorganisms. These microbial communities interact with plants to adopt biotic and 

abiotic stresses promoting plants growth and development. These microorganisms have a potential promising future with the appli-
cations of commercial, medical and environmental biotechnology. Halophytes are salt-tolerating plants which can grow in soil or wa-
ter with presence of high salt concentration and can also tolerate high drought and high temperature. In order to better understand 
the mechanism of salt and drought tolerance in halophytes, it is important to elucidate how the bacterial community interacts with 
halophytes. Recent advancement in the metagenomics techniques facilitates the analysis of genome of large number of uncultured 
and cultured bacteria from an environment in order to understand their composition and function. This review is to provide the lat-
est development in the field of metagenomics associated with halophytic plants. We will present in-depth insights about the role of 
bacteria in abiotic stress management in halophytes and its future prospective in biotech applications. 
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Introduction

Soil is one of the most complex natural environments that have large numbers of diverse microorganisms. Soil provides a favorable 
ecosystem for the growth and development of many types of microorganisms [5]. On the other hand, these microorganisms are involved 
in the decomposition of biomass that contribute in the plant nutrition, growth and the maintenance of soil fertility [6]. Diversity and com-
plexity of the microbial communities can vary according to the chemical and physical properties of the soil and its geographical location 
[7]. However, various soil ecosystems have not been investigated, and therefore a majority of microorganisms has not yet discovered [8]. 
Molecular investigations of ecosystems proved that most soil microorganisms are not known, because they could not be cultured at the 
standard laboratory conditions [9]. Thus, the limitation of non-cultured microbes poses a great challenge to study the diversity and com-
position of microorganisms in the soil. The composition of microorganisms can vary drastically among soil samples taken from different 
locations. It has been estimated that one gram of cultivated soil may contain up to 2 x 109 microorganisms [10], while a gram of forest soil 
would contain 4 x 107 microorganisms [11]. With the advent of metagenomics filed, it become possible to investigate the vast majority 
of non-cultured microbes across diverse environments on earth including soil, fresh water and ocean [12]. Therefore, using the means of 
metagenomics to study and analyze the total genomic DNA extracted from environmental samples is useful in discovering and exploring 
the world of microorganisms [13].
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Halophytes 

Soil salinity is a major issue influencing crop production throughout the world [14]. It is estimated that one billion hectares (20% of 
the world’s cultivated land and 33% of irrigated lands) are affected by high concentrations of toxic salts leading to crop decline [15]. How-
ever, there are plant species which resist or tolerate all these conditions and effectively adapt and grow in high salinity [16]. Halophytes 
are salt-tolerating plants which are able to grow in soil or water with presence of high salt concentration and could also tolerate the dry 
season [17]. Though, they constitute about 2% of terrestrial plant species, while the majority of plant species are glycophytes which can-
not withstand against high salt concentration [18]. Halophytes are found in arid and semi-arid areas as well as wetlands with high salinity 
[19]. Halophytes are plants which may withstand abnormal amounts of salts from 1 to 33% [1,17]. Halophytes have been divided into two 
groups; Hydro-halophytes which are described by the plants that can develop in hydrous conditions or on wet soils while Xero-halophytes 
are described by the plants which may be seen in dry and saline soil [19]. Moreover, these plants have various benefits of maintaining the 
ecosystem including agrarian improvement, and ecological restoration in regions that influenced by salinity and sand dunes stabiliza-
tion that located on the waterfront (Figure 1) [20,21]. They also provide food and sanctuary to a very large number of species including 
amphibian and reptiles [22]. 

Figure 1: Various benefits for halophytes [1].

Halophytes are armed with salt-responsive genes and proteins to counter the harmful effects of salinity [23,24]. Though, the mecha-
nisms of salt tolerance in halophytes are not completely understood. However, halophytes evolve more advanced mechanism of osmotic 
adjustment using Na+ and Cl− transporters, where NaCl and other inorganic salts are accumulated in the cell vacuoles, the organic solutes 
are accumulated in the cell cytoplasm [25]. Moreover, halophytes adjust themselves with soil salinity by various mechanisms, which 
are engaged with complex molecular, biochemical, physiological, and morphological changes (Figure 2) [1]. For example, A. Controlling 
the ion from reduction particularly (K+) ion [26]. B. Controlling the gene expression that is engaged in plant saltiness resistance, where 
halophytes can react to salt stress by up-regulating countless genes, and transcription factors [19,27,28]. C. Modifying photosynthetic 
pathways [29,30]. 
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Soil bacterial communities associated with plants’ roots help them to adopt the survival in biotic and abiotic stress condition. Metage-
nomic approaches revolutionize the understanding of bacterial community and their function in diverse environment including soil, cold 
and hot deserts, forests, grasslands, and tundra [31]. The diverse bacterial communities associated with halophytes and their roles in 
salt tolerance have not been well explored so far. Therefore, metagenomic methods could be used to understand the diversity of bacterial 
community and their function associated with halophytes [32]. The detailed study will give an opportunity to characterize the bacteria 
and identifying the important genes helping salt tolerance in halophytes [33]. Understanding the mechanism of tolerating high salinity in 
halophytes would have potential to engineer the crop plants to grow in saline soil and seawater with high yield biomass. Therefore, stud-
ies on halophytes may provide potentials to grow more crops to feed demanding population of human and animals as well as using large 
body of seawater and saline soil which are not fit for agriculture (Figure 3) [1].

Figure 2: Adaptive strategies for salt tolerance in plants [2].

Figure 3: Regional distribution of salt-affected soils, in million hectares [3].
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The relationship between the halophytes and plant growth-promoting rhizobacteria

Plant development might be affected by soil salinity through a roundabout way which can disserve the activities of beneficial bacteria 
that present in the rhizosphere [34]. The bacteria that tolerates the soil salinity are capable of extending the growth of many crops that 
present in salt-affected soils [35] and this is noticed at halophytes as they possess different types of bacteria at the aerial parts of the plant 
as so at the rhizosphere area that have many functions [36]. One of the most advanced researches to control and reduce the toxicity of soil 
affected by salinity is the use of Plant Growth-Promoting Rhizobacteria (PGPR) that present in the plant root. PGPR has effective role in 
reducing the stress conditions affecting plants by fixing atmospheric nitrogen into rhizosphere area [37], diseases resistance [38,39] and 
also the major ability to promote direct plant growth approach by nutrient absorption. The environmental conditions affect the capacity 
of PGPR to convert nutrients and increase plant tolerance to abiotic stress [40]. Moreover, the plant-bacterial cooperation lead the plant to 
format the microbiome in the rhizosphere and endosphere [41]. Under stress conditions, plants need the presence of associated bacteria 
to tolerate stress, so bacteria have been developed and become part of the plant biological system [42]. And so on, plants rely on bacteria 
to tolerate the stress conditions, especially the symbiotic bacteria, which may be an important factor in plant stress tolerance [1]. Bacillus 
species represents a good example of PGRP as they are considered as the most bacterial species that were isolated from soils because 
they can adapt to different environments at any conditions [43]. Moreover, many studies have confirmed that Bacillus species were found 
and isolated from desert soil under harsh conditions [44]. Halopeplis perfoliata (Forssk) is considered as an important halophytic desert 
plant, and as one of the dominant halophytes that grow on the Red Sea coastline with limited resources and abilities to resist and tolerate 
the saline conditions (Figure 4). The phenomenon of changing fruits and other parts of the plant to red is remarkable in H. perfoliata, and 
the expression of these segments may be related to the salinity tolerance (Figure 5) [45-47].

Figure 4: The area that the Halopeplis perfoliata grows, and it is clear that the area affected by salinity.
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Figure 5: Halopeplis perfoliata resists the saline conditions.

Bibi and colleagues studied the bacteria that produce the hydrolytic enzymes from seven different halophytes including: Salsola im-
bricata, Avicennia germinans, Avicennia marina, Halopeplis perfoliata, Halocnemum strobilaceum, Zygophyllum qatarense and Cyperus con-
glomeratus [48].

These halophytes were collected at the coastal area of Thuwal, Saudi Arabia. They used the carboxymethyl cellulose (CMC) agar me-
dium to isolate the bacteria, and later on the16S rRNA sequence was used to identify the bacterial strains (Table 1).

PGRP genera Specific Strains Mechanisms Reference
Acinetobacter A. calcoaceticus Gibberellin production, phosphate solubilization [50]

Azetobacter sp. A. paspali Nitrogen fixation, auxin production [51]
Azospirillum sp. - Nitrogen fixation, increase in root development [52]

A. brasilense Auxin production [53]

Bacillus sp.

B. amyloliquefaciens Release of volatiles (antifungal) [54]
B. cereus Antibiotic production [52]
B. subtilis Release of volatiles, antibiotic production, activation ISR

[54, 55]
B. thuringiensis Biocontrol against insects

Bradyrhizobium sp. - Nitrogen fixation/root nodulation [52]
Enterobacter sp. E. cloacae Release of volatiles [56]

Paenibacillus P. polymyxa Activation ISR [57]

Pseudomonas sp.
P. fluorescens Auxin production, activation ISR, plant iron nutrition [52, 56]

P. putida Biocontrol [58]
Rhizobium sp. - Nitrogen fixation/root nodulation, production of ACC deaminase [52]

Sphingomonas sp. = Chitinase production [59, 60]

Streptomyces sp.
-

Antibiotic production, siderophore production, auxin production 
(in planta tests still necessary)

[61]

S. platensis Volatile production (antifungal) [62]

Table 1: The most common (PGPR) and their mechanism.
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Significance of metagenomics

Metagenomics field became an essential method to identify and classify the uncultured microbiota [12]. Before metagenomics was 
known, several traditional methods were used to discover new strains of bacteria [63]. These traditional methods includes gram stains, 
physiological and biochemical methods which they rely on the phenotypic properties of bacteria [64]. However, these methods can be 
used only for isolates that can be cultured in the laboratory, but not the unculturable ones [65,66]. Metagenomic approaches could facili-
tate the discovery of new strains, novel genes, antibiotics, metabolites and proteins with novel function that would be useful in biotech-
nological industries [67].

Metagenomics and the discoveries of uncultured bacteria 

Over 70% of bacteria that are present in an environment cannot be cultured readily [9]. The majority of these bacteria are significant 
players in cycles of vitality, and they can live as free-living, symbiotic or as parasitic organisms. Researchers have started to expose this im-
mense bacterial world by metagenomic techniques which are effective more than using traditional molecular biology techniques (Figure 
6) [4,68]. Moreover, the investigation of uncultured bacteria has given an important bit of knowledge into disregarded catalysts that could 
not be discovered by traditional techniques (Figure 7) [69]. The field of metagenomics has demonstrated productive methods pinpointing 
the uncultured bacteria [12]. The advancements in the metagenomic analysis have given an extensive picture of the structure and function 
of both cultured and uncultured bacteria, which provides a significance to consider their environment and development. Moreover, the 
improvements of the PCR, progress in DNA sequencing innovation, and utilization of the 16S rRNA quality as a taxonomic marker, have 
authorized to discover genes of bacteria that were in various environmental samples [70]. Exploring the genetic identity of uncultured 
bacteria can be done through total genomic DNA isolation from collected samples, amplifying, and sequencing the fragments of the 16S 
rRNA gene that elected by primers [71]. Metagenomics approach have the credit for the development of molecular biology techniques, 
especially in the uncultured bacterial field, and the evolution in metagenomics field will ensure further discoveries in near future [12]. 

Figure 6: The traditional method versus 16S rRNA gene sequencing [4].
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Figure 7: Evolution of the number of microbiome. Microbial communities papers as registered in  
PubMed (microbiomedigest.com, 9 January 2017).

Future Potential and Perspective Applications

Several metagenomics studies were carried out to understand the soil microbiome of different ecosystems, however, very few studies 
were focused on the soil microbial communities associated with halophytes. Furthermore, it is also imperative to understand how the 
soil microbiome interacts and influences halophytes to sustain in the abiotic stress, and how the halophytes response to the microbiome. 
Therefore, in addition to metagenomics, transcriptome analysis of halophytes is also required to understand the interaction between 
microorganism and halophytes at molecular level. In the other hand, the future of industrial, medical, environmental biotechnology will 
depend on the field of metagenomics and environmental genomics hence for the fields of agriculture, animal feed, aquacultures and bio-
energy.

Concluding Remarks

As the Kingdom of Saudi Arabia is characterized by unique environments starting from the harsh desert of Arabia, passing by the saline 
areas and salt marshes and ending by the Red Sea which is known by its unique diversity, therefore, these rich environments must be 
investigated to explore the different worlds of microbiota and their abilities to improve the future of humanity and its resources. Microbi-
omes are the treasures hidden in nature, and now is the time to unveil them and interduce them to the interested scientific communities 
who have the knowledge for corresponding methodologies.
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