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With a previous observation of internal oxidative damage within Pseudomonas cells, present study further attempted to resolve 
the influence of the supplementation of 3 mM hydrogen peroxide (H2O2) into their culture media. Furthermore, the unlikely absence 
of damaged aggregates in Pseudomonas culture medium fraction as observed earlier in case of viable but non-culturable (VBNC) 
Escherichia coli cells, current study compelled to discern the inimitable stress response among different species of Pseudomonas. 
Initially, 3 mM H2O2 was externally added to the late log phase of Pseudomonas aeruginosa (SUBP01) and P. fluorescens (SUBP02) and 
afterwards the morphological consequences and the cell culturability were examined. Compared to P. fluorescence (SUBP02), a rela-
tively lower reduction in cell turbidity together with a rapid drop in the colony forming units (CFUs) on the agar plates was observed 
in P. aeruginosa (SUBP01) cells upon supplementation of 3 mM H2O2. Accumulation of damaged aggregates in P. aeruginosa (SUBP01) 
culture medium, consistent to their morphologically impaired cells (i.e. indicative of the VBNC state) was also noticed in this strain. 
In contrast, such a phenotype was not observed in P. fluorescens (SUBP02), indicating that a large fraction of viable and culturable 
cells still exist in the later species. The present investigation clearly revealed the resistance trait of P. fluorescence (SUBP02) against 
the external oxidative stimulant (H2O2), while the cells of P. aeruginosa (SUBP01) were found to be sensitive. 

Introduction

Microorganisms exposed to oxidative stress have been well reported to exhibit an array of metabolic and physiological dysfunctions 
[1-4]. The reactive oxygen species (ROS), namely superoxide anion (O2

–), hydrogen peroxide (H2O2), and hydroxyl radical (•OH) are gener-
ated by aerobic respiration and the accumulation of ROS beyond the cellular capacity for detoxification results in oxidative stress [5-13]. 
Interestingly, resistance against such stress has also been noted with a significant extent [13-19]. 

Compared to the actively growing cells, the starved E. coli cells have been found to be resistant not only against the oxidative stress but 
also against the temperature up shift [20], due to the expressional regulation of a set of genes especially under the σS (the master stress 
regulator, encoded by rpoS) and σE (the alternative sigma factor, encoded by rpoE) regulons [6,7,21-23]. A nearly similar scenario has also 
been observed in Salmonella spp. [24], Vibrio spp. [25,26] and in Pseudomonas putida [27,28]. Indeed, Escherichia coli and Pseudomonas 
spp. have been also reported to exhibit several unique physiological responses against oxidative stress [6,7,29-33]. In fact, several physi-
ological and morphological changes within bacterial cells during the early stationary phase appear to be similar in Escherichia coli and 
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Pseudomonas spp. [34-36]. Earlier studies noted both E. coli and Pseudomonas spp. to employ the defense mechanisms mediated by cata-
lase (encoded by the katE gene) and superoxide dismutase (encoded principally by soda gene, and also by sodB) against ROS mediated 
toxicity [6,10,16,32,37-43].

In cohort to the previous findings, our earlier work also pondered to the morphological impairment with a reduced viability in P. 
aeruginosa cells upon high speed aeration, possibly commencing the oxidative stress [1]. However, the dubious absence of damaged ag-
gregates in the culture medium, which is in general the indication of the existence of viable but non-culturable (VBNC) cells [1,2,6,7,20] 
further led the possibility of the heterogeneity in stress management among different Pseudomonas species; i.e. some strains could be 
resistant while others were sensitive. Based on these suggestive notations, the present study further clarified the oxidative stress events 
among the Pseudomonas species, i.e. P. aeruginosa (SUBP01) and P. fluorescens (SUBP02). Such strategy was employed to chalk out the 
possible resistant strains among these two species against the oxidant H2O2. Both the two species were challenged with 3 mM H2O2 at the 
late log phase, and the consequences on cell culturability were assessed. The findings of the current study projected not only on the re-
sistance phenotype of P. fluorescens (SUBP02) against oxidative state, but also incremented the existing knowledge on the bacterial stress 
management events [44-47]. 

Methods

Bacterial stain, medium and culture condition

Laboratory stock cultures of P. aeruginosa (SUBP01) and P. fluorescens (SUBP02) were used in this study. Nutrient agar (Hi-Media Lab-
oratories Pvt. Ltd., India) and nutrient broth (beef extract and peptone) were used to assess the growth and viability of bacteria [1,2,48]. 
Pre-cultures were prepared by inoculating 5 ml nutrient broth by a loopful pure colony from the freshly prepared bacterial culture plates, 
and the broths were incubated at 37°C for in shaking condition (100 rpm) for 4 hours. The resultant optical density was measured at the 
wavelength of 600 nm (OD600) and was adjusted to 0.1 by dilution with nutrient broth. A volume of 30 µL each was introduced into 2 differ-
ent sets of 30 ml of nutrient broth and incubated at 37°C with shaking at 100 rpm. At 10 hour of growth, 3 mM H2O2 was aseptically added 
into one set of nutrient broth of each of the P. aeruginosa (SUBP01) and P. fluorescens (SUBP02); while and the other set was kept running 
without H2O2; i.e. control [1,21]. At every 12 hour intervals, bacterial growth was monitored by measuring OD600 and the formation of col-
ony forming units (CFUs) was estimated by counting the colonies on agar plates up to 72 hours at every 24 hour intervals [1,2,6,7,20,48].

This is to be mentioned that earlier, in order to demonstrate the extent of H2O2 resistance in Pseudomonas spp., the minimal inhibitory 
concentration (MIC) was evaluated through broth micro-dilution procedure using different concentrations of H2O2 starting from 1 mM 
to 10 mM [4]. The minimum concentration which could inhibit the bacterial growth (as observed by the absence of turbidity), was con-
sidered as the MIC value. The study of MIC revealed that the growth of Pseudomonas spp. was inhibited by 3 mM concentration of H2O2.

Microscopy

For the examination of the bacterial cell morphology and arrangements, simple staining (Crystal Violet, Hucker’s Solution) was em-
ployed as previously described by Munna., et al [1,2,48]. Briefly, aliquots of 10 µl from each of the growing bacterial culture suspensions 
were pulled out at every 12 hour intervals as stated above; and the cell size, shape, arrangement and organization were observed under 
the light microscope (Optima Biological Microscope G206, manufactured in Taiwan) at 100× magnification [1,2,48].

Spot dilution test

Spot tests were performed at every 12 hours of growth up to 72 hours as described previously [1,2,20,48]. Each of the bacterial culture 
suspensions were serially diluted with nutrient broth up to 10-4 fold dilution. From each dilution, an aliquot of 5 µl was carefully dropped 
on to the nutrient agar plates and was kept for around 15 - 20 minutes for drying off. Finally, the plates were incubated at 37°C for 18 - 24 
hours. 
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Results and Discussion

Our earlier investigations on the impact on bacterial cells by the spontaneous generation or by imposing the oxidative stress revealed 
the loss of bacterial viability and culturability due to the toxicity especially posed by the reactive oxygen species (ROS) [2,6,20,43]. One of 
the significant findings was the demonstration of endogenous oxidative stress generation simulated by high aeration speed, which in turn 
significantly eliminated the living and culturable cells of E. coli and Pseudomonas spp. at 36 hours of growth. However, a discrepancy arose 
when the Pseudomonas culture was observed to be free from cell aggregates within the culture medium fraction [1]. Although the pigmen-
tation in the Pseudomonas cells was noticed to be eliminated in course of time, such a discrepancy in loss of viability without formation 
of debris (i.e. the aggregates) led us to assume the possible presence of Pseudomonas cells resistant against the oxidative stress. Such a 
possible heterogeneity in Pseudomonas population would be of further interest indeed. To resolve such uncertainty, in the present study 
we used H2O2 as the oxidative stress stimulant on P. aeruginosa (SUBP01) and P. fluorescens (SUBP02) to directly distinguish between the 
stress-resistant species from that of the stress-sensitive one. 

Resistance potential of P. fluorescens (SUBP02) against 3mM H2O2 

As stated earlier, our earlier studies revealed the cessation of Pseudomonas culturability in terms of the formation of colonies on agar 
plates at 36 hour of growth at an aeration speed of 200 rpm [1]. A similar frequency of growth diminution was observed in case of E. coli 
cells not only in such endogenous stress (due to accumulation of ROS), but also when the cells were challenged with 3 mM H2O2 with a 
direct influence of exogenous oxidative stress [2]. However, in the present study, a relatively quick drop both in the cell turbidity and in 
the culturable cells was observed in P. aeruginosa (SUBP01) cells upon prolonged exposure to 3 mM H2O2. Interestingly at 36 hours of in-
cubation most of the colonies of P. aeruginosa (SUBP01) were found to lose their pigmentation traits followed by the complete elimination 
of their CFUs onward (Figure 1a and 1b). Notably, even being under the same genus, no such impaired phenotypes (i.e. non-pigmented) 
neither the abolition of culturable cells were observed in case of P. fluorescens (SUBP02) (Figure 1c and 1d). Conversely, these cells were 
observed to retain their unique feature of yellow-green colonies with a steady growth rate up to 72 hours of incubation period. 

Figure 1: Assessment of cell culturability through the examination of growth of Pseudomonas aeruginosa (a, b) and P. fluore-
scens (c, d) upon 3 mM H2O2 treatment. Bacterial cells were grown in nutrient broth at 37°C under 100 rpm as described in 

Methods. At the time points indicated, OD 600 (a, c) and CFUs (b, d) were determined. Experiments were done in triplicate, and 
the results were found to be reproducible. One representative data has been shown.
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Morphological impairment of P. aeruginosa (SUBP01) compared to that of P. fluorescens cells (SUBP02) 

The dramatic fall in the culturable cells of P. aeruginosa (SUBP01) in contrast to the continual growth of P. fluorescens (SUBP02) (Figure 
1) further led us to examine the cell morphology and arrangements of the former cells under the formed stressed condition generated by 
the addition of 3 mM H2O2 (Figure 2). Interestingly, after 36 to 72 hours of incubation periods, cell aggregates were observed within the 
culture media of P. aeruginosa (SUBP01) (Figure 2d) which were significantly comparable with the H2O2 treated P. fluorescens (SUBP02) 
cells (Figure 2j). In cohort with our recent findings as well from the earlier reports, the morphologically defective cells of P. aeruginosa 
(SUBP01) were suggestive of being the non-culturable or even dead cells; while the P. fluorescence (SUBP02) cells were noticed to sustain 
viability [1,27,34-37]. 

Figure 2: Assessment of cell morphology of Pseudomonas aeruginosa (a, b, c, d, e, f; the arrowhead indicates impaired cells) 
and P. fluorescens (g, h, i, j, k, l) upon 3 mM H2O2 treatment. Cells were grown in nutrient broth at 37 °C under 100 rpm as 

described in Methods. At the time points indicated, aliquots of cell culture were removed for microscopy. 

Confirmative demonstration of loss of culturability of P. aeruginosa (SUBP01) cells 

One of the important parameters of detecting the culturability of bacterial cells lies on the demonstration of the density of their viable 
inoculums within the culture suspension used for CFU formation assessment [2]. For this purpose, the measurement of viability of cells 
was done using the subsequent 3 dilutions followed by spotting on agar media. Such a strategy also detected the retention or loss of cul-
turabality of cells when exposed to agar [8]. 

In the present study, after 36 hours of incubation period, P. aeruginosa (SUBP01) was found to be significantly inhibited compared to 
that of the control; i.e. untreated with H2O2 (Figure 3). No spot of growth was observed after 48 hours, consistent to the growth studies as 
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shown in figure 1a and 1b. On the contrary, appearance of growth of P. fluorescens (SUBP02) was noticed up to 72 hours in all of the diluted 
spots (Figure 3). Thus, together with the current findings in accordance to our earlier results (Munna et al. 2014), it can be suggested 
that Pseudomonas cells tend to exhibit heterogeneity in response towards oxidative stress. However, further genetic studies on the ex-
pressional regulation of the oxidant neutralizing genes especially in the P. fluorescens (SUBP02) would unravel the molecular mechanism 
behind the resistance mechanisms against H2O2 [14,16,17,32,40,41]. 

Figure 3: Assessment of cell culturability and survival potential of Pseudomonas aeruginosa and P. fluorescens through spot 
dilution tests upon 3 mM H2O2 treatment. Cells were grown in nutrient broth at 37°C under 100 rpm as described earlier. At 
the time points indicated, aliquots of cell culture each consisting of 5 µl were used for the spot test as described in Methods. 

Experiments were done in triplicate and the results were reproducible. One representative data has been shown.

Conclusions

Despite the lack of molecular study in our current investigation, the fatal impact of 3 mM H2O2 in P. aeruginosa (SUBP01) cells were 
clearly distinguishable from those of P. fluorescens (SUBP02), which has so far been conducted for the first time. The study evidently pro-
jected on the phenotypic changes upon the oxidant stimulation of different Pseudomonas species even belonging to the same genus, and 
the findings were sufficient to draw comprehensible evidence of a distinct stress defense mechanism of P. fluorescens (SUBP02) possibly 
involving antioxidant enzymes or iron-sequestering proteins, for the direct elimination of the reactive oxygen species (ROS). 
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