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The different environmental condition is the most highly conserved on cold shock and heat shock features among all organism’s 
cellular mechanisms. Cold shock and immediate thawing leads are kinds of cell stress that accumulation of partially and fully effected 
proteins that reflect external and eternal changes on cellular functions of all types of organisms. The objective of the examination 
was to determine the growth expression and physiological changes of Escherichia coli at cold temperatures after a certain time in 
our laboratory phenomena. The present study continued the investigation on Escherichia coli that influence of low temperature on 
growth behavior of coliform on Luria media. A slight retardation in the colony, colony count and cell morphology was noticed for 
coliform at 4°C after 48 hours and the 24 hours of incubations. Results confirm the potential to be significantly examined which can 
reveal new and vital associations.

Different environmental condition such as nutrient and oxygen availability, osmotic stress which is influenced by temperature that is 
constantly adapted by micro-organisms. After exoneration of temperature, some important changes observed in cellular physiology of 
Escherichia coli, such as membrane fluidity has been diminished and the secondary structures of nucleic acids has been stabilized also, 
which is accountable for the depressed efficiency of RNA transcription, translation, and degradation.

Bacterial cell to prevent these hostile changes, mostly by the selective production of a specific set of proteins (cold-induced proteins, 
phospholipids) and the cold shock response has enabled it consequently. It increases in membrane permeability and a decrease in 
membrane fluidity. The Gram-negative cells membrane is composed of lipopolysaccharides (LPS), which is consist of a distal polysaccharide 
(O-antigen), and a core polysaccharide and lipid A. Escherichia coli (lipid A) comprise of two glucosamine with attached acyl chains (fatty 
acids). Laureate is the fatty acyl chain frequently observed in the cells growing at 37°C. At low temperatures, there is a decrease in laureate 
which is counterbalanced by the presence of palmitoleate [1]. The Emergence of palmitoleate increases membrane fluidity by the effect 
of low temperature because of palmitoleate being an unsaturated acid. Attaching palmitoleate to lipid upon temperature downshift that 
occurs by acyltransferase LpxP in E. coli which is induced by Cold temperature. Adaptation ability of membrane fluidity in Bacillus subtilis 
involves in rapid desaturation of fatty acids that subsit as phospholipids. It is the outcome of fetching of fatty acid desaturase (Des) which 
is adjusted by the sensor kinase DesK and the responsible as regulator DesR. Probable sensor of membrane fluidity was described by the 
transmembrane domain of DesK [2]. Decreasing membrane fluidity by lower temperature, which is aid the active state of the DesK kinase; 
DesK phosphorylates the transcriptional activator DesR which is fix with the promoter of the des gene and activates the synthesis of the 
enzyme D5-desaturase which is catalysis the introduction of a double bond into preexisting fatty acids tails of phospholipids inside the 
bacterial cell membrane [2,3]. Our prior studies transpired the genetic regulation and the impact of the temperature down-shift on the 
generation of oxidative stress response in Escherichia coli [4] and the physiological influence of the external and internal oxidative stress 
in different bacterial cells has been inquired [4-7]. 

In this study, we tried to make an evidence for temperature adaptation response of the coliform starter E. coli to a freezing condition. 
Protein synthesis is required for this adaptation prominently needs protein synthesis. Synthesized proteins are found in the class of 
chaperones protein. Furthermore, a chaperone gene is characterized, and its expression is studied after exposure to low temperatures.

Laboratory stock cultures of Escherichia coli has been used in this experiment. Luria agar (LA) was used for the assay of bacterial 
culture [6]. EMB agar plates with bacterial culture was incubated at 37°C. After 24 hours incubation one loopful of bacterial culture 
was inoculated into 3 ml Luria broth (LB) which followed by 0 rpm (rotation per minute) at 37°C for 4 hours (pre-culture). Then store 
the Broth media at 4°C. Each experiment was done three times. Determining P value that is throughout the t-test beside measuring the 
Standard deviations was performed for statistical analysis of bacterial growth.

Materials and Methods
Cultural condition of bacterial strain on culture medium

Simple staining (Crystal Violet, Hucker’s Solution) was applied for the observation of bacterial cell morphology and arrangements. 
An fractional part of 10 µl from each bacterial culture suspension was removed at 24 hours’ intervals and the shape and organization of 
bacterial cells were observed under the light microscope at 1000× magnification.

Microscopic analysis
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As described previously, each of the bacterial culture suspensions was 100 µl was dropped on to the LA plates, spread and dried off 
for 15 minutes, and finally, the plates were incubated at 37°C for 24 hours. The microscope was done at every 24 hours of growth from 
the LA plates.

Spread plate test

The total volume of the broth culture was 3 ml and the sample taken for spread was 100 µl. The countable colony of cultivable cell 
population due to cold stress according to the time. CFU count = bacterial colony number × dilation factor.

Results

There are no significant changes were observed in cell turbidity (Figure 1) as well as in CFU at 4°C temperature which is consider as 
low temperature in Luria broth media. But at growth retardation of bacteria observed up to 2 weeks of incubation.

Growth result of E. coli upon cold shock

In cohort with the previous findings of growth pattern no morphological change was documented for E. coli when they were subjected 
to grow at low temperature in LA (Figure 2) for 24 hours. 

Morphological changes of E. coli

Colony-forming units (CFU) count of Escherichia coli

Time durations Bacterial colony number CFU count (approximately)
Day 2 > 401 1.205

Day 4 > 398 1.1905

Day 6 > 403 1.2105

Day 8 > 402 1.205

Day 10 > 410 1.2305

Day 12 > 397 1.1905

Day 14 > 400 1.205

Table 1: Bacterial colony count and CFU result of cultivability and survival potential of E. coli upon low temperature treatment.

Figure 1: Assessment of cell cultivability through the examination of growth of E. coli upon low temperature treatment.  
Bacterial cells were grown in Luria agar as described in materials and methods.
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Analysis of the growth characteristics of the LAB has resulted in a grouping into mesophilic strains. Mesophilic organism E. coli 
strain used in this experiment, which has an optimal growth temperature of approximately 37°C. The minimal growth temperature of 
Escherichia coli was shown to be slightly lower than 10°C (exact minimal growth temperature 7.5°C), whereas the theoretical minimal 
growth temperature appeared to be 7.5°C. E. coli was able to recover from a cold shock treatment with a temperature drop of about 20°C 
within 48 hours to 2 weeks, indicating that this strain has no capacity to efficiently adapt to low temperatures. However, a cold shock 
from 37 to 4°C resulted in a growth block (Figure 1). There was no significant morphological change observed under the microscope 
after 48 hours but growth retardation of bacteria observed up to 2 weeks of incubation. The high thawing effect inhibits the growth 
of E. coli as well as low temperature. Coliform bacteria like E. coli can be inhibited by antimicrobial treatment but cold and heat shock 
treatment has natural aspects. The chaperone protein and genes of E. coli cannot express their genetic alleles to producing offspring and 
do not attempt to protein fold by expressing chaperones and inhibit the growth of mesophilic organism such as E. coli. The heat shock 
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Figure 2: Morphological examination of E. coli spp. upon low temperature treatment.
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response in bacteria is a protective mechanism to cope with heat-induced damage to proteins by synthesizing a specific set of proteins 
known as heat shock proteins (HSPs) [8]. The alternative sigma factor σ32 mediates the heat shock response. Under stress conditions, 
an elevated environmental temperature causes a transient increase in σ32 transcription and transient stabilization of σ32 protein levels, 
which is usually unstable. The σ32 directs transcription of RNA polymerase (RNAP) from the heat shock promoters and, thus, results 
in the induction of HSPs. Most HSPs behave as molecular chaperones that function to bind to and stabilize non- native polypeptides 
that are generated during protein synthesis or by heat denaturation of existing proteins, modulate protein folding pathways to prevent 
miss-folding or aggregation of proteins and promote protein refolding and proper assembly [9]. A number of molecular chaperones have 
been identified in E. coli, including DnaK (HSP70), DnaJ, GrpE, GroEL (HSP60), and GroES and most of them are heat inducible [10,11]. In 
addition, some HSPs are ATP-dependent proteases and play major roles in digesting irreversibly heat-damaged polypeptides for removal 
and assist in nucleic acid synthesis, cell division, and motility under normal and stress conditions [12]. Some of the HSPs are essential 
for growth at a higher temperature and are involved in various cellular processes such as proteolysis, cell wall synthesis, cell division, 
phase growth, and plasmid DNA replication [10,13,14]. Sub lethal heat stress (heat shock) or prior exposure to low heat may render E. 
coli O157:H7 microorganisms more resistant to subsequent heat treatment, which would otherwise be lethal [15,16]. HSPs play a crucial 
role in this stress response [17-78].

Conclusion

A multifaceted response on the wide variety of stresses has to mounted by Escherichia coli which also encountered by these type 
of organisms. The adaptive response for the bacterial survive varies on the variations of the temperature range. They have shown an 
extensive variety of survival strategies and temperature-related changes to the cold stress. There are no morphological characteristics 
changes and other property of variations like shrinking or elongating were not observed. This is the significant invention in the strategies 
and phenomena of this study and it occurs in microorganism’s resistance mechanisms against cold stress. This experiment has been 
fueled through an important information in the related field from previous researches which has been worked with identifying the effect 
and mechanism of different stresses including cold shock and heat shock on certain kind of bacteria such as Escherichia coli.
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