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Abstract
Nucleolin, also called C23, is a eukaryotic phosphoprotein and 90% is found in dense fibrillary regions of the nucleolus. Addition-

ally, it is located on the cell membrane and within the cytoplasm and performs a myriad of functions including ribosome assembly, 
rDNA transcription, and RNA metabolism. Nucleolin is involved in disease processes such as viral and bacterial infections, heart 
disease, cancer proliferation and metastases. Overall, nucleolin tends to be overexpressed in many diseases, such as cancers and viral 
infections but is diminished in other conditions such as Alzheimer’s and Parkinson’s disease. In bacterial disease, nucleolin appears 
to vary from organism to organism. Numerous research studies have shown that targeting nucleolin with an aptamer, such as AS1411 
and HB-19, has shown promise in alleviating some of these illnesses. In this paper, we will briefly discuss nucleolin and then review 
its role in various bacterial and viral infections according to recent research studies.
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The structure of nucleolin 

The human nucleolin gene is comprised of 14 exons with 13 introns and spans about 11 kb [1]. The intron 11 of the nucleolin gene 
encodes a small nucleolar RNA, termed U20. Human nucleolin has a molecular mass of 76.3 kDa [1]. Nucleolin maintains a high degree of 
evolutionary conservation among different species and is comprised of three structural and multifunctional domains: An N-terminal por-
tion that contains several acidic sections; 2 to 4 RNA-binding domains called RNA recognition motifs (RRM) in the center; and a glycine/
arginine-rich domain or GAR domain at the C-terminus [2]. The N-terminal acidic and basic region and the C-terminal domain, which is 
abundant in RGG repeats, mediate protein-protein interactions with histone H1, U3 snoRNP, and ribosomal proteins [3]. 

The function of Nucleolin 

The primary role of nucleolin is rRNA synthesis and ribosome biogenesis, but it has been implicated in many other tasks including gene 
silencing, senescence, and cell and cell cycle regulation as well as in steps of ribosomal synthesis including transcription of rDNA repeats, 
modifying and processing pre-rRNA, assembling pre-ribosomal particles and nuclear-cytoplasmic transport of ribosomal proteins and 
subunits [2-5]. Additionally, it is a DNA-dependent ATPase capable of degrading itself as well as plays a role in the regulation of cell growth, 
DNA replication and apoptosis [6-10].

Nucleolin in Bacterial Infection 

Although the role of nucleolin in bacterial infectious diseases has not been extensively studied, it appears that nucleolin expression 
varies between bacterial organisms. Certain bacteria increase nucleolin expression, (e.g. Porphyromonas gingivalis and wild-type Entero-
hemorrhagic Escherichia coli (EHEC) strain), while others show no change (e.g. M. paratuberculosis) or a decrease (e.g. vt2-negative mu-
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tant of EHEC O157: H7) in nucleolin expression [11-14]. Nucleolin was additionally found to be involved in the adherence of EHEC O157: 
H7 via intimin [15-17]. Nucleolin at wound sites was previously identified as docking partners for pathogenic bacteria and viruses [18]. 
Nucleolin can also be mobilized into the cytoplasm during infection, suggesting an ability to recruit and sequester cell-surface nucleolin 
into extracellular bacterial micro-colonies [13]. The correlation of nucleolin with bacterial strains studied are only a small percentage of 
those that exist, and further studies would benefit to find remedies to these unfortunate and uncomfortable illnesses (Table 1). Obtaining 
further data on the expression levels of nucleolin of various bacteria could allow for the determination of nucleolin-targeted therapy to 
eradicate certain pathogenic bacterial infections. 

Bacteria Type NCL Expression Bacteria’s Association with Nucleolin References
Enterohemorrhagic Escherichia coli O157: 
H7

Adherence via intimin [16,17]

Wild-type enterohemorrhagic Escherichia 
coli strain (EHEC)

Increased [13]

A vt2-negative mutant of EHEC O157: H7 Decreased [13]
M. paratuberculosis No change [11]
Porphyromonas gingivalis Increased Inflammatory response [12]
L. monocytogenes or an inert particle Not present Nucleolin was present in the phagosomal  

compartment of macrophages and confirmed the 
importance of nucleolin expression for LVS  
binding, but not in an attempt of another  

intracellular pathogen such as L. monocytogenes 
or an inert particle

[14]

F. tularensis Acts as a surface receptor for F. tularensis LVS on 
human monocyte-like THP-1 cells

[14]

Pathogenic bacteria and viruses Docking partners with nucleolin [18]
Enteropathogenic E. coli Nucleolin mobilized and recruited into the  

cytoplasm
[13]

Table 1: Association of Nucleolin and bacterial infection.

Nucleolin in viral infection: More research is available on nucleolin in various viral infections compared to bacterial infections. There 
is a generalized process of how nucleolin helps viruses to bind and replicate within a cell. The virus can bind to translocated cell-surface 
nucleolin directly and then enter into the cell and replicate (Figure 1). Nucleolin can be modified via phosphorylation, methylation, and 
ADP ribosylation, which can alter the function of nucleolin [19].

Figure 1: Nucleolin in viral infection of a cell. During viral infection, translocation of nucleolin can occur (1), 
to create cell-surface nucleolin (2), and then nucleolin can promote viral entry via direct binding (3), after 
which, viral replication takes place and viral infection ensues (4). (Orange circle with solid line = cell mem-

brane; orange circle with dotted line = nuclear membrane; blue circle = nucleolus).
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Currently bacterial infections can be controlled via antibiotic treatment; however, majority of viral infections often have no treatment 
available. Thus, studying nucleolin involvement in viruses can be beneficial to finding and creating better pharmacologic therapies for 
their eradication. 

Nucleolin as a viral target to facilitate viral attachment in Human Immunodeficiency Virus-1 (HIV-1) 

HIV is a lentivirus, which is a subtype of the family Retroviridae, transmitted as a single-stranded positive-sense enveloped RNA virus, 
which is reverse-transcribed into double-stranded DNA via a viral reverse transcriptase. HIV-1 group M viruses, which are more virulent 
than HIV-2 viruses, are the predominant HIV types and have caused the AIDS epidemic. The HIV-1 virus causes immunodeficiency which 
can cause subsequent death by cancer and/or opportunistic infections. Nucleolin appears to be a viral target, assisting viruses in attach-
ment, and an anti-viral target.

Immunodeficiency viruses have been found to affect the nucleolin of different species of monkeys in various ways. Complex cell cycle 
dysregulation was reported to be associated with dysregulation of nucleolin turnover, and this was also present during simian immunode-
ficiency virus (SIV) infection of rhesus macaques; however, naturally, SIV-infected sooty mangabeys show normal regulation of cell cycle 
control that includes preserved nucleolin turnover [20]. Significant changes in nucleolar structure and post-translational regulation of 
nucleolin have been described in HIV [21]. 

Various studies have shown that nucleolin inhibitors can also block HIV replication (Table 2). Such inhibitors include V3 loop-mimick-
ing pseudopeptide 5[Kpsi(CH2N)PR]-TASP]psi(CH2N), HB-19, and AS1411 [22-24]. There are preferential uptake and stability of HB-19 
in lymphoid organ sites of HIV propagation [25]. These HIV inhibitors may one day be used as potent medications to combat HIV disease. 

HIV Target Function References

V3 loop-mimicking pseudopeptide 
5[Kpsi(CH2N)PR]-TASP]psi(CH2N)

Specifically binds to the surface of monocyte-derived macrophages and 
forms a stable complex with the cell surface-expressed nucleolin, as has 

been demonstrated to be the case in peripheral blood mononuclear cells.
[22]

HB-19
Forms an irreversible complex with cell-surface expressed nucleolin, and 
eventually results in degradation of these cells, implying that nucleolin is 

involved in the process of HIV attachment to target cells.
[23]

AS1411
Cell-surface-expressed nucleolin was observed to be an antiviral target, 
opening the way for the use of AS1411 as a potent and safe anti-HIV-1 

agent.
[24]

Table 2: Nucleolin and Human Immunodeficiency Virus (HIV).

Nucleolin’s involvement in the spread of Herpes Simplex Virus-1 (HSV-1)

HSV-1 is a member of the Herpesviridae family and is a contagious virus that produces cold sores in humans. They consist of a double-
stranded linear DNA genome encapsulated in a protein capsid shaped like an icosahedron. There are two regions, the unique extended 
region (UL) and the short unique region (US). It is apparent via the current research that HSV-1 uses nucleolin for attachment, and viral 
replication and specific genes help to disperse nucleolin.

Researchers found that UL24 is involved in the HSV-1 dispersal of nucleolin, while cells infected with a UL24-deficient virus retained 
foci of nucleolin staining [26]. This indicates that the 24th gene of the UL may encode a gene that disperses nucleolin. VP22, a protein found 
in HSV-1, was found to target and surround areas of dispersed nucleolin during productive HSV-1 infection; however, altered nucleolin and 
marginalized chromatin were detected using a VP22-null virus, which indicated that VP22 was not responsible for the nuclear architec-
ture alterations [27]. For active HSV-1 infection, nucleolin is required [28]. Viral replication required high levels of nucleolin expression, 
indicating for the first time that there is a direct role for nucleolin in HSV-1 infection [28]. A genetic link was discovered between UL24 
and HSV-1-induced dispersal of nuclear nucleolin and subsequently found that the conserved N-terminal domain of HSV-1 UL24 protein 
is enough to induce spatial redistribution of nucleolin [29]. Fibrillarin was independent of UL24, which affects nucleolin localization 
[30]. Conserved residues in the UL 24 protein of HSV-1 were determined to be essential for dispersal of nuclear nucleolin [31]. Nucleolin 
interacted with the US11 protein of HSV-1 and is involved in its trafficking [32]. With all of this data regarding HSV-1 and nucleolin, it is 
apparent that a nucleolin inhibitor, such as those used in HIV-1 infection, would be of benefit to fight off HSV-1 infection.
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Nucleolin as a facilitator for viral binding to host cells in Respiratory Syncytial Virus (RSV)

RSV is a syncytial virus that causes infections of the respiratory system, especially in young children. It is an enveloped virus with an 
RNA genome. RSV seems to bind to nucleolin and helps viral and host cell membranes to join together, and without nucleolin, RSV has diffi-
culty infecting a host. Nucleolin was identified as a cellular receptor for human RSV [33]. RSV was found to interact with host-cell nucleolin 
through the viral fusion envelope glycoprotein and binds specifically to nucleolin at the apical cell surface [33]. Mouse knockdown of lung 
nucleolin was associated with significantly reduced RSV infection, which confirmed that nucleolin is a functioning RSV receptor in vivo 
[33]. Evidence of a cell-surface nucleolin in the respiratory tract was seen, as well as in tissues outside the respiratory tract, relating to RSV 
clinical manifestations [34]. The RSV glycoprotein was found to mediate the attachment of RSV to the cell membrane, which in turn im-
proves the interaction of the RSV fusion protein with nucleolin, which helps to fuse the viral and host cell membranes [35]. Since nucleolin 
is a receptor for RSV, potentially, nucleolin inhibitors can be developed to prevent or even alleviate RSV infection. 

Nucleolin’s involvement in replication of Human Cytomegalovirus (CMV) infection 

Human CMV is a member of the Herpesviridae family and is enveloped. It primarily infects immunocompromised hosts. Nucleolin is 
involved in the replication of CMV. Nucleolin was found to associate with UL44, which is a CMV DNA polymerase accessory subunit and is 
necessary for viral replication efficiency [36]. Nucleolin was identified as one of the nucleolar partners of CMV pp65 [37]. Host cell nucleo-
lin is essential to maintain human CMV compartment architecture. It was shown that nucleolin bound to purified UL44 and that nucleolin 
is thus involved in protein organization within replication compartments [38]. Dynamic and nucleolin-dependent localization of human 
CMV UL84 at the periphery of nucleoli and viral replication compartments was noted [39]. Thus, blocking the UL44 subunit of CMV or 
nucleolin itself appears to be a potential target for pharmacological therapy.

Overexpression of Nucleolin significantly reduces the viral titers of the Influenza A virus

Influenza viruses are in the orthomyxovirus family, which are RNA viruses. Types A, B, and C can infect humans and can cause myalgias 
and upper respiratory symptoms. Influenza binds to nucleolin, and this is necessary for replication. Alternatively, nucleolin overexpres-
sion reduces the infection abilities of Influenza A. A non-structural protein 1 (NS1) of influenza A virus binds and interacts with nucleolin 
during the infectious process [40]. Researchers sought to investigate whether human influenza virus infection mid-pregnancy alters brain 
development [41]. Nucleolin mRNA was significantly decreased day 0 and day 35 in the neocortex and was drastically increased in day 35 
in the cerebellum, which suggests that influenza viral infection mid-pregnancy in mice causes long-term changes in nucleolin levels [41]. 
Host nucleolin was discovered to be a novel partner in interaction to influenza A virus nucleoprotein [42]. Depletion of nucleolin in A549 
cells followed by influenza A virus infection caused increased expression of viral protein transcripts, matrix (M1) and hemagglutinin in 
infected cells, while overexpression of nucleolin in cells followed by influenza A virus infection significantly reduced late viral gene tran-
scripts as well as the viral titers [42]. Therefore, in Influenza A infection, nucleolin inhibitors may be useful to eradicate or at least reduce 
the progression of this disease. 
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Virus Type NCL expression Virus association with NCL References
HIV-1 Cell-surface NCL has been 

recognized as a low-affinity 
co-receptor for human im-

munodeficiency virus type 1 
(HIV-1) anchorage on target 

cells

[24]

Induced SIV infection Dysregulation of nucleolin 
turnover

[20]

Naturally infected mang-
abeys with SIV

Preserved nucleolin turnover [20]

HSV-1 UL24- assists in the dispersal 
of nucleolin

[26]

HSV-1 Increases Nucleolin Required for ef-
ficient HSV infection

[28]

RSV Facilitates RSV binding to 
host cells. It is a cellular 

receptor for RSV

[33]

CMV Nucleolin was found to as-
sociate with UL44, which is a 
CMV DNA polymerase acces-
sory subunit and is necessary 
for viral replication efficiency.

[36]

Influenza A Influenza A virus was found 
to be a non-structural protein 

1 (NS1) binds and interacts 
with nucleolin during the 

infectious process.

[40]

Overexpression of nucleolin 
in cells followed by influenza 
A virus infection significantly 
reduced late viral gene tran-

scripts as well as the viral 
titers.

[42]

Nucleolin is a host cell sur-
face protein for entry

[43]

Coxsackie B Coxsackie B virus-binding 
protein was found to be 

nucleolin.

[44]

Poliovirus Nucleolin was previously 
shown to translocate in the 
cytoplasm after infection of 

cells

[45]
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parainfluenza virus (HPIV-3) Cell surface-expressed 
nucleolin was identified as a 

cofactor required for efficient 
entry into human lung epi-

thelial A549 cells

[46]

Hepatitis C Virus (HCV) Elevated in Huh 
7-HCV cells

[47]

Adeno-associated virus 
(AAV2 capsids)

Nucleolin was previously 
shown to interact with 
Adeno-associated virus 

(AAV2 capsids) and showed 
that knockdown of nucleo-
lin mobilized capsids to the 
nucleoplasm and increased 

transduction by 10 to 30-fold.

[48]

Crimean Congo Hemorrhagic 
Fever Virus (CCHFV)

Human cell surface nucleo-
lin was a putative Crimean 
Congo Hemorrhagic Fever 

Virus (CCHFV) entry factor, 
and it was expressed on all 
susceptible cells tested, but 

not on cell surfaces resistant 
to CCHFV

[49]

Feline calicivirus Viral replication [50]
Recombinant Norwalk virus Viral replication [50]

Feline calcivirus Nucleolin is part of the feline 
calicivirus RNA translational 

complex, and for efficient 
feline calicivirus replication, 

the N-terminal region of 
nucleolin is required.

[51]

Japanese Encephalitis Binding protein [52]
Dengue virus Nucleolin interacts with den-

gue virus capsid protein and 
is involved in the formation 
of infectious virus particles 

and that this interaction 
is disrupted via adding 

nucleolin binding aptamer 
(AS1411).

[53]

Enterovirus 71 Cell surface nucleolin was 
found to improve enterovirus 

71 binding and infection as 
a novel binding receptor for 
EV71 and knockdown of cell 

surface nucleolin reduced 
EV71 binding, infectivity, and 

production in human cells.

[54]
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Rabies virus Mostly nuclear rabies virus 
phosphoprotein (P-protein) 

isoform P3 can localize to 
nucleoli and interact with 
nucleolin and be depleting 
nucleolin expression pre-

vents viral protein expression 
and infectious production of 

the virus.

[55]

Kaposi’s Sarcoma-Associated 
Herpes Virus

The presence of cytoplasmic 
nucleolin is required for 
protection from Kaposi’s 

Sarcoma-Associated Herpes 
Virus

[56]

Epstein Barr Virus Epstein Barr Virus uses 
nucleolin to establish persis-

tent B-lymphoblastoid cell 
infection

[57]

Table 3: The nucleolin role for attachment of other viruses.

Conclusion 

In conclusion, nucleolin appears to be tied to viral and sometimes bacterial survival. In viruses, nucleolin is used for entry as well as 
replication. Very little research has been done on nucleolin in bacterial infection and there is not enough to draw apparent correlations. 
However, the current research shows that nucleolin inhibitors can possibly be used pharmacologically, since most viruses and some bac-
teria need nucleolin to survive and replicate. Nucleolin is not a widely studied molecule, and many questions are still unanswered and 
further research is needed. We do not yet know the full mechanism of what causes nucleolin to, in a sense, “turn it’s back” on a healthy cell 
and help viruses replicate. Possibly phosphorylation or methylation, or such, may ignite it. We also do not know which type of nucleolin is 
better to target-cell-surface vs. intracellular vs. nucleolar nucleolin. Use of nucleolin inhibitors in HIV-1 as discussed above appears to be 
a potential success, but clinical trials are still needed, so we still have a long way to go before it can be proven. Overall, nucleolin seems to 
be a promising target in viral infections and more research is needed to figure further out what this fascinating molecule can do.
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