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A number of vector-borne diseases posed genuine problems, including health and economic problems. Dengue fever is among the 
most hazardous vector-borne disease, which concern the public health issue [1]. The major cause of the fever is dengue virus (DENV), is 
a mosquito-borne RNA(+) (positive stranded) virus, belongs to Flaviviridae family and Flavivirus genus [2]. Mosquito Aedes aegypti is the 
major vector and source of transmission of dengue virus. Toxins from Bacillus thuringiensis had been successfully used against the larvae 
of A. aegypti, but a gradual resistance was notice in the insects against the toxins over the years [3]. 

Photorhabdus bacteria such as P. luminescens, P. temperata and P. asymbiotica produce an array of new toxins and virulence factors, 
against the insects including A. aegypti, and no resistance has been reported in the insect vectors against these toxins to date [3,4]. All 
three species of Photorhabdus are nematodes symbiont of the genus Heterorhabditis [5]. 

Photorhabdus sp. are now well known entomopathogenic bacteria against a wide range of insects when released in to the gut of insects 
[2]. Complete genome analysis of Photorhabdus sp. revealed that genes encoding hemolysins, and proteases are critical of insecticidal 
activities [6]. The lici; plu4092-4093 and plu4436-4437 encoding polypeptide chains in Photorhabdus sp., have been termed as PirA and 
PirB, respectively, for “Photorhabdus insect-related proteins A and B,” reveal sequence similarity with endotoxins of B. thuringiensis as well 
as with developmentally regulated protein from Leptinotarsa decemlineata [7].

Moreover, it has been reported that the PirAB toxin from Photorhabdus sp. had the potential to kill larvae of many insects including 
A. aegypti. The PirAB toxin have been determined to equally effective, either expressed in E. coli expression system or/and purified from 
the culture of Photorhabdus sp [8]. The Pir toxins function as binary proteins and both are necessary for insecticidal activity [9]. All the 
two components of Pir (PirA and PirB) are encoded by genes, located at plu4093-4092 (pirA) and plu4437-4436 (PirB) loci in Photorhab-
dus genome. Both Pir components exhibit a strong functional similarity to the δ-endotoxins of B. thuringiensis, which make them a substi-
tute of Bt toxin [9]. PirA component of the binary protein exhibits a bit sequence similarities with known toxic proteins, however, its coun-
terpart (PirB) shows strong sequence similarity with the N-terminal side of the pore-forming domain of the Cry2A insecticidal toxin [10]. 
These similarities suggest the presence of a similar motif in PirAB. Moreover, PirB has also a strong similarity with the developmentally 
regulated protein (DRP) of L. decemlineata [11]. The DRP has been thought to have a putative juvenile hormone esterase (JHE) property 
because of its pattern of expression, that matches insect development profile and the levels of JH produced [12]. It is therefore, assumed 
that PirB may exhibit the same kind of activity. However, further study is need to elucidate a the PirB activity [6,13]. 

It has been evaluated in a comparative study of the rate of mortality of PirAB, PirA and PirB, when applied to A. aegypti. The PirAB was 
most effective against the larvae of A. aegypti as compared to PirA or PirB exclusively [14]. The PirB activity was improved gradually and 
was tended to be stable after 2 days. However, PirA caused mortality in larvae of A. aegypti and tended to be stable after 4 days of treat-
ment [14]. 
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It is concluded that chemical control of A. aegypti has more hazardous environmental consequences and biological control is a best 
solution against the dengue virus. However, there are consistent raise of resistance against Bt and other biocontrol system. Photorhabdus 
toxins are comparatively new and more efficient and the level of the resistance in the insects is still at very primitive. The Photorhabdus 
toxins PirAB is more efficient A. aegypti, and can to used against A. aegypti to control the dengue fever. 
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