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Abstract
Many genomes for important microorganisms including unculturable viruses and bacteria have been decoded and the sequences 

of the genomes are in the public databases. Additionally, many novel microorganisms are discovered using next generation sequenc-
ing technologies. With the known genomes and genes for the microorganisms, the nucleic acids-based genetic assays for detection 
and identification of the microorganisms have been developed. The nucleic acids-based genetic tests have been widely accepted for 
clinical diagnostics, food safety, environment and biosafety tests for biopharmaceutical products. Although the molecular tests can 
not differentiate live or dead microorganisms, the progress in viable PCR assays for microorganisms are very promising. The mo-
lecular testing has been used for the microorganism source tracking, monitoring and eventually elimination of microorganisms in a 
product or the environment. With the advanced knowledge of microorganism genomes, many developed molecular assays and the 
integration of automation in the biotech laboratories, it is most likely that the nucleic acids-based genetic testing for microorganisms 
will replace the culture-based testing for microorganisms in near future.
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Introduction
The culture-based tests for microorganisms are often referred as “golden standards” by microbiologists. The culture methods detect 

culturable microorganisms, but not unculturable microorganisms [1,2]. Microbiologists faced challenges in detecting slow growing bac-
teria such as Mycobacterium spp. and unculturable viruses such as norovirus for many years. Now, scientists detect those challenging 
human pathogens using molecular tests [3,4]. Over the past 30 years, microbiology has changed completely and become molecular mi-
crobiology era. When an unknown bacteria or virus is isolated and it can be sequenced immediately. With the sequence of the genome, a 
PCR assay can be developed for source tracking. One of examples was the outbreak of Shiga-toxin-producing Escherichia coli O104:H4 in 
2011 in Germany [52]. The E. coli isolated was immediately sequenced with Ion Torrent next-generation sequencing (NGS), then the qPCR 
assay targeting the unique Stx2a allele was developed to detect the outbreak strain [53,54]. Rapidly, the contaminated food samples were 
found and discarded.

Recently, many new bacteria and viruses have been discovered using nucleic acids-based molecular methods and NGS. Many of the 
new microorganisms are accepted as new bacteria or virus species, even they remain as unculturable microorganisms. The small ss-
DNA virus family Parvoviridae has many new unculturable members including bovine parvovirus 2 and bovine parvovirus 3 [5,6]. The 
genomes of those bovine parvoviruses were detected in bovine serum products used in biopharmaceutical industries. Presence of the 
bovine viral nucleic acid sequences in bioproducts caused serious biosafety concern [7].

The sterility testing for microorganisms, in vitro cell culture assay with indicator cell lines for adventitious viruses are the standard 
GMP testing methods, and the molecular tests such as PCR and sequencing are used as additional supporting tests [8,9]. The nucleic acids-
based genetic testing with PCR, Sanger DNA sequencing and next generation sequencing has significantly improved the testing quality 
such as higher sensitivity, better accuracy, and fast turn around time. With the use of advanced technologies and the quality compliance, 
the molecular tests can be the rapid test of choice for many laboratories [10,11].
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1. Nucleic acids-based genetic testing technologies

The most popular molecular technologies used in genetic testing are PCR, DNA sequencing, and next generation sequencing (NGS). All 
those technologies are based on the principle of DNA replication. PCR amplifies trace amount of DNA or RNA molecules and generates 
million copies of amplicons. Since the invention of PCR in late 1980, PCR has become the most reliable and sensitive technology in detec-
tion of DNA or RNA molecules. Sanger DNA sequencing is used to identify a PCR product. Both PCR and Sanger DNA sequencing are used 
together for detection and identification of a microorganism. NGS provides entire genome analysis for one microorganism and metage-
nomics analysis for a community or population of microorganisms [55-57].

The molecular testing analyzes the targeted genes or genomes of the microorganisms with PCR, Sanger DNA sequencing and NGS. 
The molecular testing delivers rapid tests with high sensitivity and specificity. The molecular testing can be a presumptive or definite 
test [43,44]. When a molecular testing delivers the results with 100% certainty, the test is definite; and a presumptive test delivers the 
most likely results with significant confidence although the certainty is not 100%. Thus, molecular genetic testing is the most reliable test 
compared to culture-based tests.

1.1. PCR and applications in detection of microorganisms

There are many types of PCR including conventional PCR, real-time PCR, quantitative PCR, droplet digital PCR (ddPCR), and reverse 
transcription-PCR (RT-PCR) [12-15]. The conventional PCR is used for amplicon analysis such as amplicon fragment analysis, amplicon 
sequencing, nested PCR and multiple amplicons analysis. The conventional PCR is qualitative, or semi-quantitative. When using conven-
tional PCR for detection of microorganisms, PCR product is sequenced and then used for BLAST search GenBank [58-60]. Recently, con-
ventional PCR with degenerative primers was used to develop paramyxoviruses family PCR using capillary electrophoresis of amplicons 
for accurate sizing. The target gene was the conserved motif of viral polymerase [16]. Clearly, when conventional PCR delivers accurate 
sizing and sequencing of the targeted genes of microorganisms, it offers an excellent definite assay for detection and identification of 
broad range of microorganisms.

The real-time PCR is an amplification curve assay, and it uses the threshold of the number of PCR cycles (Ct). In real-time PCR, the am-
plification of DNA templates is monitored during the cycling of PCR reactions. The quantitation is achieved using the standard curves. The 
extreme specificity of DNA synthesis with Taq Polymerase makes the real-time PCR as the most popular quantitative assay. However, at 
the lower detection limit, the Ct value becomes unreliable and causes mis-interpretation [13]. Thus, single target real-time PCR detection 
of microorganisms is a presumptive assay. The positive test results should be verified by conventional PCR, DNA sequencing, or multiplex 
real-time PCR with additional targets [44,45]. The ddPCR performs in nanoliter droplets and the amplicons are counted and calculated 
at the end of PCR. The ddPCR delivers the standard curve independent absolute quantitation. The real-time PCR and ddPCR are the best 
assays for detection and quantitation of single or few targets of genes [12-15]. The RT-PCR targets the RNA molecule, and the RNA tem-
plate is converted into cDNA with reverse transcriptase; then the cDNA templates are amplified by PCR. There are many viruses with RNA 
genomes and the RNA viruses can be detected by RT-PCR [37,45]. Furthermore, the RT-PCR can detect the expression of genes. Since RNA 
molecules have short life-time in bacteria, the RT-PCR was used to detect viable bacteria, not dead bacteria [80]. 

Standard PCR detects both viable and nonviable microorganisms. When the DNA from dead cells is damaged, the PCR may only detect 
DNA derived from viable microorganisms. Thus, viable PCR or vPCR was developed for detection of viable microorganisms. The viable 
PCR involves treatment of microorganisms in a sample with fluorescent dye which can penetrate damaged cells, but not intact viable cells. 
The dye then binds to cellular DNA and causes damage of DNA under light exposure. The damaged DNA subsequently cannot be amplified 
by PCR. By comparing the amplification curves (Ct values) between treated and untreated samples, the viable and nonviable microorgan-
isms in the sample can be detected [17,18]. Alternatively, vPCR is used in detection of viable microorganism after enrichment culture. If 
a sample does not have viable microorganisms, the Ct values between cultured and uncultured samples would be similar. If a sample has 
viable microorganisms, the Ct value for cultured sample would be reduced due to the growth of viable microorganisms [19].
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1.2. Sanger DNA sequencing and applications in identification of microorganisms

The Sanger DNA was developed by Fred Sanger in 1970. The Sanger sequencing offers the most reliable and accurate sequences [20]. 
Sanger sequencing can identify bacteria by sequencing 16S rRNA gene using bacteria universal primers and identify fungi by sequencing 
the ITS regions of rRNA genes using fungal universal primers [21-24]. The genetic identification of bacteria and fungi needs to have pure 
microorganism isolates for DNA extraction and then amplify 16S RNA gene or ITS region. The PCR products are purified and used for DNA 
sequencing with sequencing primers. Nowadays, sequencing of the 16S rRNA gene or ITS region is the first experiment for identification 
of unknown bacteria or fungi.

The DNA sequences can be analyzed using BLAST search against GenBank at National Center for Biotechnology Information (NCBI, 
www.ncbi.nim.nih.gov). The similarity of DNA sequences with GenBank entries are reported [61], therefore, the microorganisms are 
identified based on DNA sequences.

The genetic identification of bacteria and fungal isolates using DNA sequencing of 16S rRNA gene from bacteria and ITS regions form 
fungi has been commercialized as MicroSeq ID [25]. The MicroSeq ID is the standardized test which can be performed to GMP standards. 
Furthermore, other genes from microorganisms can be sequenced and used for typing or source tracking of the microorganisms. When 
a microorganism isolate is obtained, the strain can be determined using multilocus sequence typing (MLST) on PCR amplicons [26,27]. 
There are several international consortiums for tracking the sources of most important human pathogens using standardized MLST. 
One of examples, Legionella pneumophila sequence-based typing (SBT) is a standard test by EWIGLI (The European Working Group for 
Legionella Infections, www.ewigli.org). Total seven loci including flaA, pilE, asd, mip, mpmpS, proA and neuA are amplified by PCR and 
sequenced [28,29], and the variations of the sequences on the loci are called alleles. The allele profiles of the strain compared to the refer-
ence sequences are reported to EWIGLI where a database is maintained for international surveillance of the disease and monitoring the 
outbreak strains.

1.3. NGS and genome sequencing of microorganisms

The NGS can sequence millions of amplicons or small fragments in parallel using nanotechnologies [30,31]. The NGS can analyze a 
whole genome of microorganism or a population of microorganisms as metagenomics analysis [32,33]. With advanced bioinformatics 
tools and clouds computing, the NGS data can be processed rapidly with the return of vast number of reads. When a novel virus or ad-
ventitious virus was found by NGS universal virus screen [33,34], the presence of virus can be verified by PCR and Sanger sequencing of 
the amplicons so that the entirety of the assembling genome is confirmed. For identification of isolated virus or bacteriophage, the best 
approach is using NGS whole genome sequencing [34,35]. Bacteriophage contamination of E. coli fermentation for enzymes production 
is a serious manufacturing problem [91,92]. The bacteriophage genomes can be any type of nucleic acids such as ssDNA, dsDNA, ssRNA, 
and dsRNA [36]. The type of nucleic acids can be determined using enzyme digestion of the genomic nucleic acids. Then, a DNA or RNA 
library can be constructed with NGS adaptors and analyzed on either Ion Torrent or Illumina MiSeq. The reads can be assembled using 
virus or bacteriophage reference genomes.

NGS has been approved for genetic diagnosis by FDA [46,47]. NGS has become a powerful tool for personalized genomics in cancer 
diagnostics [46,47]. In many cases, Sanger sequencing was used for the confirmation test of genetic mutations detected by NGS [48,49]. 
The study of microorganisms using metagenomics with NGS has revealed many novel bacteria and viruses [31,50]. The research and early 
industrial entries for detection of adventitious viruses using NGS showed promising results [51]. Similarly, the novel bacteria and viruses 
detected by NGS must be confirmed for the entirety of the genomes using Sanger sequencing.

2. Development of molecular assays for detection and identification of microorganisms

There are many PCR assays developed for detection of microorganisms in clinical, food safety, environment and biosafety for biophar-
maceutical products [62-65]. An assay development needs an assay concept, then the assay targets, and assay conditions. When an assay 
is developed, it needs to be validated and then it can be a test for the intended use.
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2.1. The concept and targets for PCR assay

The concept comes from the intended use of the assay such as present or absent assay, quantitative assay; to detect a group of patho-
gens, a species, a strain, and a serogroup. When the intended use of the assay is decided, the identifier sequences are selected as the PCR 
target regions. The target regions must be unique for the bacteria group, species, or strain. When the PCR assays are for detection of 
strains, isolates, or serotypes; several target sequences are required. When the PCR targets are identified, the design of PCR primers and 
probes can be performed using bioinformatics tools. Then, PCR conditions are tested. The PCR positive standards either genomic DNA 
or RNA from the microorganism or synthesized target DNA sequences are used to evaluate the PCR primers, probes, and PCR conditions.

For qPCR assay for the toxigenic strain of E. coli O157: H7, there were several targets required, first target was to identify E. coli 157:H7 
with eae, then with targets for Shiga toxin-1 (stx1) and Shiga toxin-2 (stx2); thus, a multiplex qPCR was used [66]. For qPCR assay for 
MRSA, two target components were used, one was for Staphylococcus aureus bacteria using the unique region Sa422, and another one 
was for the antibiotic resistant gene mecA [67]. Since Legionella pneumophila serogroup 1 causes most human infections, the qPCR assay 
for serogroup 1 has the clinical interest. The qPCR assay for serogroup 1 was developed using serogroup 1 strains specific targets from 
LPS cluster genes [68]. For fungi qPCR assays, the ITS sequences were selected to design primers and probes [24,69]. A qPCR assay for 
Histoplasma capsulatum was developed for clinical and environment testing; the human pathogen Histoplasma capsulatum cause lung 
infections through inhalation of fungal spores from air carrying fungal spores [70].

 Viruses have diversified genome structures; each family or genus has the signature genome structures and genes. The conserved re-
gions of viral polymerase genes were used to develop herpesvirus family PCR [71], and paramyxoviruses family PCR [16]. For enterovirus, 
5’ untranslated regions (5’UTR) were used to design the qPCR assay [72]. The viral capsids genes were used as PCR targets for RT-qPCR 
assays for genogroup I and II noroviruses [73].

2.2. Assay validation

When an assay is developed, the assay specifications need to be validated for the sensitivity, specificity, accuracy, precision, and repro-
ducibility [39,74-76]. The suitability for type of samples or intended uses must be validated as well [74,75]. The validation can be per-
formed by two analysts in single laboratory or in multiple laboratories. The purpose of validation is to prove the assay can be performed 
repeatedly.

For PCR assays, the primers must be verified electronically for the specificity using BLAST analysis or other bioinformatics tools. The 
PCR assays need to be performed in the presence of non-specific DNA, typically genomic DNA from bacteria, animal cells and plant tis-
sues. The PCR assays do not amplify no-specific DNA. The sensitivities of the qPCR assay may be compared with another qPCR assay or 
with a culture method [77,78]. The accuracy needs to be evaluated with spiking of “known” amount of target DNA in various genomic 
DNA and matrix materials [74,75]. The linearity and slope of a qPCR standard curve are also indicators for accuracy [77,78]. The precision 
is another important criterion for a qPCR assay and it is expressed statistically using RSD (relative standard deviation) or coefficient of 
variation (CV) [74,75]. A good PCR assay must have less than 15% of CV [75]. Typically, qPCR has greater variation at lower limit of detec-
tion (LOD) and Limit of quantification (LOQ) [74,77]. When using the qPCR assay to test the target in a new matrix or product, a product 
qualification evaluation must be performed by spiking of known amounts of target [74,75] to prove that the spiked targets can be detected 
at low concentrations. In addition, an internal control for PCR assay, sample processing control with a microorganism or plasmid DNA to 
monitor the recovery are also required [74,75]. With a validated PCR assay, the performance of the assay is expected. For GMP testing, the 
assays must be validated [75].

2.3. Assay and test

A test works with its context, the intended use, the quality standards, the acceptance criteria, and the data interpretation. For example, 
EPA1615 is an official method developed by US EPA for drinking water test for Enteroviruses [37]. The test utilizes two type of assays, the 
qPCR assays for detection of viral genomes, and the culture method to access viable or non-viable virus using animal cell culture. The test 
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protocol covers the sampling procedure, RNA extraction protocol, qPCR assays and cell culture method, then data recording and analy-
sis, result interpretation and reporting [37]. When molecular assays are used for testing of the microorganisms in clinical samples, food 
samples, environment samples and biopharmaceutical products, the intended use of the assays must be validated and approved by the 
regulatory agencies. Then, the molecular assays become regulated tests.

3. Quality systems and regulation requirements

 The testing facility, lab and operation must compile with the quality standards known as ISO, cGLP and cGMP. The tests must meet the 
regulatory requirements including FDA and EPA. The testing laboratory must state clearly about the intended uses such as raw materials, 
bulk or product lot release tests [88]. The international standard document ISO17025 is one of the most important general requirements 
for the competence of testing and calibration laboratories. In ISO17025 document, the quality requirements have been clearly explained 
to cover the entire testing process [79].

In U.S., the microbiological testing including molecular testing is regulated and the corresponding quality standards are applied. The 
information about the regulatory organizations can be found on their websites [81-90]. In Europe, similar regulatory agencies and ISO 
standards are compiled for governing and guiding the testing industries. Microbiological tests for food safety are regulated by FDA, the 
official test methods are from FDA and AOAC validated methods [40]. When a test is developed, then it can be validated by AOAC, after 
FDA approval of the test, it becomes a FDA approved test method [40]. Similarly, GMP biosafety tests for adventitious microorganisms in 
biopharmaceutical products are FDA regulated tests, the tests must be validated and approved by FDA [41,42]. Clinical diagnostics are 
regulated by FDA and the corresponding regulatory agent CLIA [38,39]. 

Conclusion
The advances of genomics for all living microorganisms including both culturable and unculturable microorganisms have made the 

genetic testing for them a reality. Many of the unculturable microorganisms are known as molecular species and they can be potential risk 
and pathogens when they are present in environment, food, biopharmaceutical products. Our understanding about unculturable microor-
ganisms is very limited. With the advanced molecular genetic testing for the microorganisms including both culturable and unculturable 
microorganisms, we can live in a safer environment with safer food, vaccines and biopharmaceutical products.
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