

A Pragmatic “Risk-Age” Stratification Reveals High Cardiometabolic Vulnerability in Pregnant Women with Obesity

Juan Antonio Suárez González* and Mario Gutiérrez Machado

Universidad de Ciencias Médicas de Villa Clara, Cuba

***Corresponding Author:** Juan Antonio Suárez González, Universidad de Ciencias Médicas de Villa Clara, Cuba.

Received: December 22, 2025; **Published:** January 03, 2026

Abstract

Background: Adolescents (≤ 19 years) and women of advanced maternal age (≥ 35 years) with obesity represent vulnerable groups. We propose a practical “risk-age” grouping to evaluate their combined cardiometabolic risk profile.

Methods: A cross-sectional analytical study was conducted in 404 pregnant women with a $\text{BMI} \geq 25 \text{ kg/m}^2$. Participants were stratified into two groups: Central reproductive age (20 - 34 years, $n = 252$) and risk-age (≤ 19 and ≥ 35 years, $n = 152$). Anthropometric (waist circumference, waist-to-height ratio - WHtR), biochemical (lipid profile), and perinatal outcome data were analyzed.

Results: The risk-age group exhibited a significantly worse cardiometabolic profile, including a higher prevalence of visceral adiposity ($\text{WHtR} > 0.53$: 97.4% vs. 93.3%, $p < 0.05$) and hypertriglyceridemia (69.7% vs. 55.6%, $p = 0.004$). While perinatal outcomes did not differ significantly between groups in isolation, a powerful interaction was found. The combination of belonging to the risk-age group and having class II-III obesity was associated with an odds ratio of 5.8 (95% CI: 1.1 - 29.5, $p = 0.035$) for fetal death. A high WHtR was a strong independent predictor for fetal macrosomia ($OR = 4.5$).

Conclusion: Grouping pregnant women with obesity at the extremes of reproductive age identifies a cohort with heightened cardiometabolic risk. The synergy between this “risk-age” status and severe obesity is associated with a sharply increased risk of fetal death, advocating for targeted clinical surveillance in this population.

Keywords: Gestational Obesity; Advanced Maternal Age; Adolescence; Cardiometabolic Risk; Perinatal Outcomes

Introduction

Maternal obesity is a major risk factor for adverse pregnancy outcomes. While adolescents and women of advanced maternal age (AMA) are independently considered higher-risk groups, a combined assessment of their cardiometabolic profile is lacking. This study proposes a pragmatic “risk-age” stratification (≤ 19 and ≥ 35 years) and compares its cardiometabolic risk and perinatal outcomes against a central reproductive age group (20 - 34 years) in the context of maternal obesity.

Methods

We conducted a cross-sectional study at the Maternal Provincial Hospital of Villa Clara, Cuba (2023-2024). A sample of 404 pregnant women with a pregestational $\text{BMI} \geq 25 \text{ kg/m}^2$ was analyzed. The cohort was divided into: Group 1 (Central reproductive age: 20 - 34 years, $n = 252$) and group 2 (Risk-age: ≤ 19 and ≥ 35 years, $n = 152$). Anthropometric measurements included waist circumference and WHtR.

Biochemical analysis included a fasting lipid profile. Perinatal outcomes recorded were: hypertensive disorders, fetal macrosomia (> 4000g), prematurity, and fetal death. Statistical analysis was performed using SPSS v.28.0, employing Chi-square, Mann-Whitney U tests, and binary logistic regression to calculate Odds Ratios (OR) with 95% confidence intervals.

Results and Discussion

The risk-age group demonstrated a significantly more adverse metabolic profile (Table 1), characterized by greater visceral adiposity and atherogenic dyslipidemia. This aligns with the pathophysiological understanding of obesity as a dysfunction of adipose tissue distribution.

Variable	Group 1: Central reproductive age (20 - 34 years) n = 252	Group 2: Risk age group (≤ 19 and ≥ 35 years) n = 152	p-value
BMI (kg/m ²), Median (IQR)	32.3 (30.6-33.8)	33.2 (30.9-35.5)	0.045*
WC >88 cm, n (%)	200 (79.4%)	134 (88.2%)	0.020**
ICT >0.53, n (%)	235 (93.3%)	148 (97.4%)	0.048**
Triglycerides >1.7 mmol/L, n (%)	140 (55.6%)	106 (69.7%)	0.004**
TG/HDL Ratio, Median (IQR)	4.6 (3.9-5.3)	5.1 (4.3-5.9)	<0.001*

Table 1: Comparison of baseline characteristics and cardiometabolic risk indicators between central reproductive age and risk-age groups.

Key: BMI: Body Mass Index; IQR: Interquartile Range; CC: Waist Circumference; ICT: Waist-to-Height Ratio (WHtR); TG/HDL: Triglycerides/HDL Ratio / Triglycerides-to-HDL Ratio; Mann-Whitney U test / Mann-Whitney U test; ** Chi-square test.

The most critical finding was not from the groups in isolation, but from their interaction with disease severity. The combination of belonging to the risk-age group and having class II-III obesity was associated with 5.8-fold increased odds of fetal death (OR = 5.8; 95% CI: 1.1 - 29.5; p = 0.035). This suggests a synergistic effect where the physiological vulnerabilities at the extremes of reproductive age are dramatically potentiated by severe obesity and its associated inflammatory and pro-thrombotic state.

Furthermore, a WHtR >0.53 was confirmed as a robust anthropometric marker, showing 4.5-fold increased odds for fetal macrosomia (OR = 4.5; 95% CI: 2.8 - 7.2) across the entire cohort, underscoring its clinical utility over BMI alone.

Conclusion

This short communication highlights that a simple “Risk-Age” stratification (≤ 19 and ≥ 35 years) effectively identifies a subgroup of pregnant women with obesity who present a more adverse cardiometabolic profile. The potent interaction between this risk-age status and severe obesity significantly elevates the risk of fetal death. These findings support the integration of this pragmatic stratification and WHtR measurement into prenatal care protocols to optimize resource allocation and intensify monitoring for the highest-risk patients [1-8].

Bibliography

1. Organización Mundial de la Salud (OMS). “Obesidad y sobrepeso”. Ginebra: OMS (2021).
2. McAuliffe FM., *et al.* “Management of prepregnancy, pregnancy, and postpartum obesity from the FIGO Pregnancy and Non-Communicable Diseases Committee: A FIGO (International Federation of Gynecology and Obstetrics) guideline”. *International Journal of Gynecology and Obstetrics* 151.1 (2020): 16-36.
3. Stephanie T Chung., *et al.* “The relationship between lipoproteins and insulin sensitivity in youth with obesity and abnormal glucose tolerance”. *The Journal of Clinical Endocrinology and Metabolism* 107.6 (2022): 1541-1551.
4. Akselsson A., *et al.* “Prolonged pregnancy and stillbirth among women with overweight or obesity - a population-based study in Sweden including 64,632 women”. *BMC Pregnancy Childbirth* 23.1 (2023): 21.
5. Sociedad Cubana de Endocrinología. “Guía cubana para el diagnóstico y manejo del síndrome metabólico”. *Revista Cubana de Endocrinología* 31.2 (2020).
6. Naila Ramji., *et al.* “The impact of isolated obesity compared with obesity and other risk factors on risk of stillbirth: a retrospective cohort study”. *Canadian Medical Association Journal* 196.8 (2024): E250-E259.
7. Savarese G., *et al.* “Heart failure and obesity: Translational approaches and therapeutic perspectives. A scientific statement of the Heart Failure Association of the ESC”. *European Journal of Heart Failure* 27.7 (2025): 1273-1293.
8. Araiza-Garaygordobil D., *et al.* “Obesity and cardiovascular risk: a primer for the clinician. Obesidad y riesgo cardiovascular: una revisión para el Clínico”. *Archivos de Cardiología de México* 95.1 (2024): 69-80.

Volume 15 Issue 1 January 2026

©All rights reserved by Juan Antonio Suárez González
and Mario Gutiérrez Machado .