

EC EMERGENCY MEDICINE AND CRITICAL CARE Image Article

Coronavirus Vaccination Advancement

Manu Mitra*

Department of Alumnus with Electrical Engineering, University of Bridgeport, USA

*Corresponding Author: Manu Mitra, Department of Alumnus with Electrical Engineering, University of Bridgeport, USA.

Received: May 20, 2021; Published: June 29, 2021

Abstract

Antigen and antibody for Coronavirus RNA Vaccination Advancement is presented with illustrations and it's uses.

Keywords: Coronavirus; RNA; Vaccination; Antigen; Antibody; SARS (Severe Acute Respiratory Syndrome)

Abbreviation

SARS: Severe Acute Respiratory Syndrome

Introduction

Illustrations of Coronavirus, it's features; B-cells remembers as a foreign alien that is damaging the system [1-3].

Materials and Methods

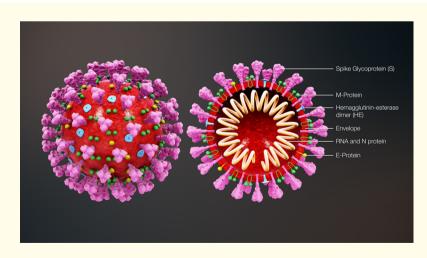


Figure 1: Illustrates cross section of coronavirus.

Antigens:

- Antigens are the substance that can induce an immune response.
- Usually proteins such as lipids, polysaccharides or nucleic acids.
- It is within the body or externally.

Antibodies:

- Antibodies are the proteins and recognizes and bind to antigens.
- It is within body.

Figure 2: Illustrates when an antigen is induced in the body.

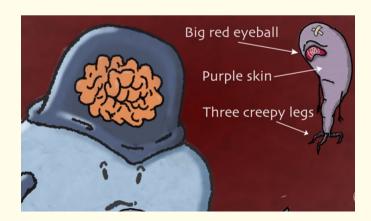


Figure 3: Illustrates lymphocytes remembers that it is a alien that is damaging the system.

Citation: Manu Mitra, et al. "Coronavirus Vaccination Advancement". EC Emergency Medicine and Critical Care 5.7 (2021): 89-96.

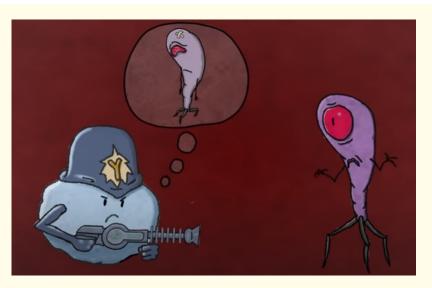


Figure 4: Illustrates when the coronavirus attacks the system, lymphocytes fights as it remembers that it is damaging the system.

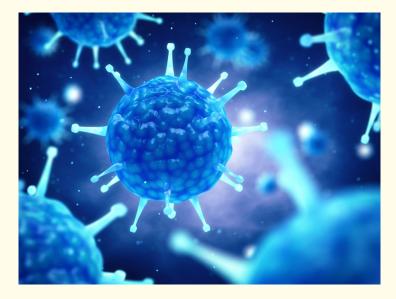
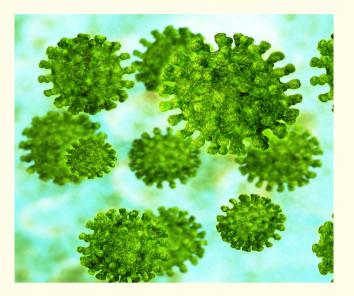



Figure 5: Illustrates antigen for coronavirus: SARS (Severe Acute Respiratory Syndrome) Coronavirus.

Membrane protein (Matrix) is a recombination of protein (is also called as Matrix or E1 glycoprotein) and consist of aa 182-216 immunodominant areas. It is produced in *E. coli*.

Figure 6: Illustrates antigen for coronavirus: severe acute respiratory syndrome coronavirus nucleoprotein (aa 1-422) is a recombination of nucleocapsid antigen produced in E. coli with higher than 95% pureness. For use in western blot, ELISA and alternative immunoassays.

Figure 7: Illustrates antigen for coronavirus: SARS coronavirus nucleoprotein (N-Term, Mid) is a recombination of protein (nucleocapsid core antigen) consist of N-term blended to an immunodominant region from the middle of the protein (aa 1-49, 192-220). It is produced in *E. coli*

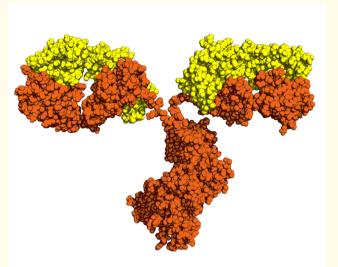


Figure 8: Illustrates antibody for coronavirus: Mouse anti severe acute respiratory syndrome SARS-CoV membrane antibody (2H2C4) is a monoclonal antibody that is particular for human coronavirus and reacts with the SARS-CoV membrane glycoprotein (Matrix glycoprotein or E1). Antibody is suitable for use in ELISA and western blot.

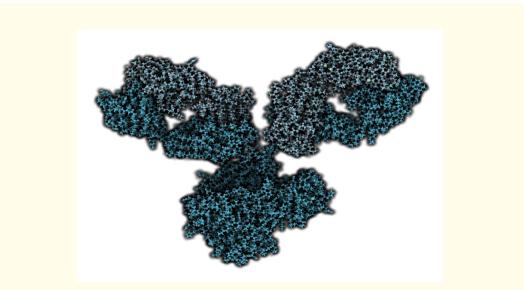
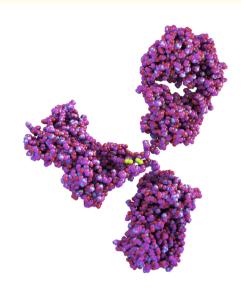
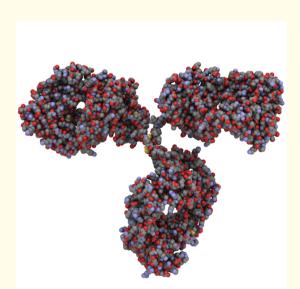




Figure 9: Illustrates antibody for coronavirus: Mouse anti SARS coronavirus nucleoprotein antibody (3861). Mouse monoclonal antibody specific for SARS coronavirus nucleoprotein. Antibody is also volatile with the NP of SARS-CoV-2 (COVID-19) by ELISA.

Figure 10: Illustrates antibody for coronavirus: Mouse anti SARS coronavirus nucleoprotein antibody (3851). Mouse monoclonal antibody particular for SARS coronavirus nucleoprotein. Antibody is also volatile with the NP of SARS-CoV-2 (COVID-19) by ELISA.

Figure 11: Illustrates antibody for coronavirus: Mouse anti SARS coronavirus nucleoprotein antibody (3862). Mouse anti SARS coronavirus nucleoprotein antibody is particular for the nucleocapsid protein of SARS-CoV. It also recognizes the NP of SARS-CoV-2 (COVID-19) by ELISA. SARS-CoV-2, formerly known as the 2019 novel coronavirus (2019-nCoV), causes the epidemic COVID-19 disease.

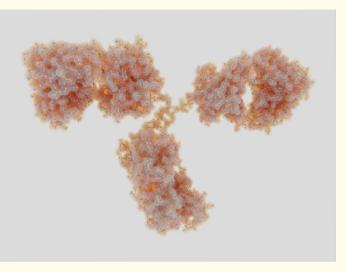


Figure 12: Illustrates antibody for coronavirus: Mouse anti SARS coronavirus nucleoprotein antibody (3864). Mouse anti SARS coronavirus nucleoprotein antibody is particular for the nucleocapsid protein of SARS-CoV. It also recognizes the NP of SARS-CoV-2 (COVID-19) by ELISA. SARS-CoV-2, formerly known as the 2019 novel coronavirus (2019-nCoV), causes the epidemic COVID-19 disease.

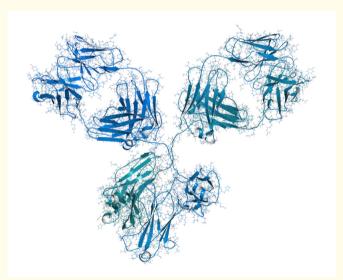


Figure 13: Illustrates antibody for coronavirus: Mouse anti SARS coronavirus nucleoprotein antibody (3863). Mouse anti SARS coronavirus nucleoprotein antibody is particular for the nucleocapsid protein of SARS-CoV. It also recognizes the NP of SARS-CoV-2 (COVID-19) by ELISA. SARS-CoV-2, formerly known as the 2019 novel coronavirus (2019-nCoV), causes the epidemic COVID-19 disease.

Figure 14: Vaccination for COVID-19: Illustrates the vaccination for Covid-19. Illustration Credit: Marc-Antoine De La Vega.

Results and Discussion

Presentation on coronavirus vaccination advancement is illustrated.

Conclusion

- Example of Antigen for Coronavirus is shown for body immune system (Lymphocytes) to produce faster antibodies.
- Example of Antibody for Coronavirus is shown to neutralize the viral infection of coronavirus.

Acknowledgements

Author would like to thank Prof. Navarun Gupta for their academic support. Author also thanks anonymous reviewers for their comments.

Conflict of Interest

There are no conflicts of interest.

Bibliography

- 1. "Coronavirus." Wikipedia, the free encyclopedia (2003).
- 2. Antigen vs Antibody. "Antigen vs antibody What are the differences?" (2017).
- 3. "Coronaviruses: The next disease X?" The Native Antigen Company (2020).

Volume 5 Issue 7 July 2021 ©All rights reserved by Manu Mitra., *et al.*