

EC EMERGENCY MEDICINE AND CRITICAL CARE Research Article

AES a Presentation of Ascaris Toxin

Avinash Shankar^{1*}, Amresh Shankar² and Anuradha Shankar³

¹Chairman, Institute of Applied Medicine, National Institute of Health and Research, Warisaliganj (Nawada), Bihar, India ²Honorary Director, Aarogyam Punarjeevan, Ram Bhawan, Patna, India ³Ex Director, Centre for Indigenous Medicine and Research, Senior Research Fellow cum Medical Officer, Regional Institute of Ayurveda Research, Itanagar, Arunachal, India

*Corresponding Author: Avinash Shankar, Chairman, Institute of Applied Medicine, National Institute of Health and Research, Warisaliganj (Nawada), Bihar, India.

Received: July 11, 2019; Published: July 24, 2019

Abstract

Acute encephalitic syndrome (AES) though primarily caused by virus but other pathogens cannot be ignored as prompt and correct clinical acumen save majority of life.

Treatment and evaluation of 147 cases of AES admitted at our centre managed based on previous experience of similar AES prevalence in 1985, in nutritionally deprived patients of poor socio economic status with history of passing Round worm, saved all 147 cases without any adversity or adjuvant required or mortality and all passed round worm on deworming (Albendazole and Ivermectin) in therapeutic dose for 3 consecutive days after 7th day of discharge. Majority patients regained consciousness within 48 hours of therapy while seizure seized in all cases by 12 hours of therapy.

Thus, consider Round worm Encephalopathy in nutritionally deprived patients of AES in addition to other pathogens as right approach will save life, time and cost of therapy. Round worm causes encephalopathy due to competitive inhibition of Pyridoxal 5 phosphate Co enzyme, a prime co enzyme for Gama Amino Butyric Acid synthesis and metabolism in brain by its poly peptide secretion in adverse situation.

Keywords: AES; Round Worm Encephalopathy; Pyridoxal 5 Phosphate; GABA

Introduction

Febrile convulsion not a new presentation but continuing since long and disease gravity is increasing progressively. Initially it was claimed solely due to viral infection and was termed Japanese encephalitis but these days the presentation being termed as AES (acute encephalitic syndrome). In spite of available therapeutics and advanced diagnostic tool the mortality remain the same even at higher centre [1-5].

Acute encephalitis is the clinical diagnosis of children with acute onset of symptoms and signs of inflammatory lesions in the brain. Changes in sensorium, seizures and upper motor neuron type of altered muscle tone point to cerebral dysfunction [6].

The clinical picture usually consists of a prodromal phase (one to three days) with fever, malaise and headache and an encephalitic phase with continued fever, decreasing level of consciousness, seizures, abnormal movements or paralysis. Signs of meningeal inflammation are absent or minimal.

Citation: Avinash Shankar., et al. "AES a Presentation of Ascaris Toxin". EC Emergency Medicine and Critical Care 3.8 (2019): 586-593.

In summary, all that presents with fever and cerebral dysfunction are not acute encephalitis.

Acute encephalitis is mostly caused by any of the many 'neurotrophic' viruses, many of which are vector-transmitted (arthropod-borne) arboviruses. In India, Japanese encephalitis (JE) virus is the commonest. Clinical neurologic manifestations caused by wide range of viruses, bacteria, fungus, parasites, spirochetes, chemicals and toxins. correct management will depend on the correct diagnosis [7].

Considering the similar disease prevalence among the down trodden and nutritionally deprived children in 1985 who proved to be a manifestation of Ascaris lumbricoidis toxin and majority saved.

Thus, the similar line of therapeutic was evaluated in patients with AES presented at RA Hospital and Research Centre Warisaliganj (Nawada) Bihar with prime motive of ensuring cure in majority.

Objective of the Study

Ensure cure in majority and ascertain the cause of presentation.

Materials and Methods

Material

Patients with complaints of AES attending Medical emergency of RA Hospital and Research Centre during May to July 5th 2019 were considered for the study.

Methods

Parents of the admitted patients were thoroughly interrogated for onset of the disease and its progression, patients were clinically evaluated, investigated and provided basic life support and administered.

Oxygen inhalation

Ryles tube intubation for feeding (Bland, sweet, liquid oral) and Antacid with Oxetacaine (Ancool Gel) 2.5 ml every 6 hrs

IV Mannitol 10% with Glycerin 10% in dose of 10 ml/kg every 12 hours

Inj Sodium Valproate infusion with pediatric intravenous solution

Inj Amikacin 7.5mg /Kg every 12 hours

I.V Paediatric solution plus Methyl cobalamin, Pyridoxin and Nicotinamide ½-1ml slow infusion

Pulmosafe Ointment for local chest application

Syr Neurovit through feeding tube 1.25 ml to 2.5 ml every 12 hours

Frequent change of posture

Cold sponging

Table A

Patients were observed for:

- Fever
- Convulsion
- Consciousness status
- Any evident paresis
- Any unusual presentation

Citation: Avinash Shankar., et al. "AES a Presentation of Ascaris Toxin". EC Emergency Medicine and Critical Care 3.8 (2019): 586-593.

587

On discharge on $5^{\rm th}\,day$ patients were advised

Susp Ancool 2.5 ml three times daily				
Syr Neurovit 1.25 - 2.6 ml every 12 hourly				
Syr Sodium Valproate 1.25-2.5 ml every 8 hours				
Syr Becomplex 2.5 ml twice daily				
Bland, simple and sweet oral liquid diet				
After a week for deworming patients were advocated				
Albendazole plus Ivermectin suspension in dose of 5 ml - 10 ml at bed time for 3 consecutive days				
After deworming patients were advised-				
Syr Neurovit 1.25-2.5 ml every 12 hours for 2 month				
Syr B complex 2.5-5 ml twice daily for 2 month				
Deworming every month for 3 days for 3 consecutive month every year				
High protein diet				
Restricts Biscuits, Kurkure etc.				

Table B

Observation

Selected 147 patients were of age group 2 - 14 years and majority (38.8%) were of age group 5 - 8 years while 10.9% were of age group 11-14 years (Table 1) out of them 99 were male and 48 female respectively (Figure 1).

Age group	Number of patients			ents
(in years)	Male	Female	Total	Percentage
2 - 5	31	17	48	32.7
5 - 8	40	17	57	38.8
8 - 11	17	09	26	17.6
11 - 14	11	05	16	10.9

AES a Presentation of Ascaris Toxin

Majority (49.8%) were suffering since 6 - 12 hours while 7.4% patients were from more than 24 hours (Figure 2).

Majority (55.8%) patients attended the Centre after 12 - 18 hours of onset of disease while 9.5% after > 24 hours (Figure 3).

Figure 3: Bar diagram showing distribution of patients as per lag period in attending our centre.

Out of all 44.9% were having temperature > 102°F, 95.2% with convulsion and unconsciousness and loss of sensorium in the extremity, 70.7% with port belly abdomen, history of passing round worm, abdominal distension and urticarial rashes in past in 59.2%, 72.8% shows hemoglobin < 10 gram %, signs of malnutrition and raised eosinophil count in all the cases (Table 2).

Citation: Avinash Shankar., et al. "AES a Presentation of Ascaris Toxin". EC Emergency Medicine and Critical Care 3.8 (2019): 586-593.

589

Particulars	Number of patients		
Fever			
> 102°F	66		
< 102°F	81		
Convulsions			
Tonic clonic	140		
Mild jerks	07		
Loss of sensation	147		
Consciousness			
Unconscious	140		
Conscious	07		
Abnormal behaviour	07		
History of Helminthiasis	87		
Recurrent lose motion	147		
Abdominal distension	147		
Urticarial rash	87		
Clinical examination			
Port belly abdomen	104		
Signs of mal nutrition	147		
Palpable liver	90		
Investigation			
CBCs shows raised eosinophil	147		
Haemoglobin			
< 10gm %	107		
> 10gm%	40		
CSF	No abnormality seen		
X ray Chest	No abnormality detected		
X ray abdomen	Distended intestinal loop		
Blood for Malarial antigen	None		
Widal	Non reactive		
Blood and CSF for Viral analysis	No virus detected		
EEG	No evident pathology		
CT Brain	No evident pathology		

Table 2: Distribution of patients as per their presenting features.

Result

Majority patients regained consciousness in 12 hours though 27 cases taken 40 hours to regain consciousness.

Convulsion seized within 14 hours in all the cases irrespective of their age or lag period.

Feeding tube removed after 48 hours in all the cases

AES a Presentation of Ascaris Toxin

591

No patients present with any residual paresis or neuropsychiatric changes.

After a week administration of Albendazole with Ivermectin suspension at bed time for 3 consecutive days ensure passage of plenty of round worm in all the cases

Post therapy 2 weeks follow up reveals no untoward effects or withdrawal manifestation.

All cases were repeated for their basic bio parameters shows no alteration in any of the cases.

Discussion

Nutritionally deprived Patients of Acute Encephalopathy syndrome admitted at our centre having history of passing round worm in past, vomiting and diarrhoea, occasional urticarial rash, fever been treated conventionally on the line of Round worm encephalopathy evident during 1985 shows complete recovery within 48 hours and passed round worm on deworming on 7th day after discharge [8] (Figure 4).

Figure 4: Pathogenesis of Round worm encephalopathy.

Therapeutic supremacy and achievement of clinic pathological cure can be explained as per follows [9-15] (Figure 5).

Schematic Presentation of the Administered Drug Effect Oxygen inhalation: To ensure appropriate energy need of brain cells and check hypoxic degeneration. IV Mannitol 10% with Glycerin 10%: Reduce brain oedema. IV pyridoxin: Facilitate Pyridoxal 5 phosphatase a co enzyme. Responsible for formation of GABA from Glutamic Acid and its metabolism by activating enzyme Glutamate decarboxylase and GABA transaminase. IV Sodium Valproate: To control seizure. Through Ryle's tube Antacid with Oxetacaine: Antacid solution coats intestinal mucosa checks toxin absorption, intestinal irritation Oxcetacain acting as local anaesthetic on round worm body calm the worm, check its irritation and secretion of polypeptide. Neurovit Syr (Herbal neurogen): Revitalize damaged neural cells, energize the brain cells and preserve neural cells function. Bland, simple, sweet Liquid oral diet: Facilitate nutrition to child and round worm. Antimicrobial therapy: To check super infection.

Pulmosafe Chest Application: To facilitate reabsorption of lung fluid and check respiratory infection

Cold sponging: To decrease body temperature and prevent neural cell integrity.

Figure 5: Showing effect and plan of therapy.

Conclusion

All cases of AES responded well to the regime with 100% survival without any untoward effects or sequel and proved to be due to Ascaris lumbricoides toxin, Thus AES in nutritionally deprived patients Round worm encephalopathy must be kept in mind.

Bibliography

- 1. Prober CG., *et al.* "Central nervous system infections". In: Kliegman RM, Stanton BF, St. Geme JW, Schor NF, editors. Nelson textbook of pediatrics. 20th edition. New Delhi: Reed Elsevier India Pvt. Ltd (2016): 2936-2948.
- Shah A and John TJ. "Recurrent outbreaks of hypoglycaemic encephalopathy in Muzaffarpur, Bihar". *Current Science* 107.4 (2014): 570-571.
- 3. Joshi R., *et al.* "Changing landscape of acute encephalitis syndrome in India: A systematic review". *National Medical Journal of India* 25.4 (2012): 212-220.
- 4. Jain P., *et al.* "Epidemiology and etiology of acute encephalitis syndrome in North India". *Japanese Journal of Infectious Diseases* 67.3 (2014): 197-203.
- 5. Kakkar M., et al. "Acute encephalitis syndrome surveillance, Kushinagar district, Uttar Pradesh, India, 2011-2012". Emerging Infectious Diseases 19.9 (2013): 1361-1367.

Citation: Avinash Shankar., et al. "AES a Presentation of Ascaris Toxin". EC Emergency Medicine and Critical Care 3.8 (2019): 586-593.

- T Jacob John., et al. "The syndrome of acute encephalitis in children in India: Need for new thinking". Indian Journal of Medical Research 146.2 (2017): 158-161.
- 7. Shankar A. "Round worm Encephalopathy". The Antiseptic (1987): 595-598.
- Bayoumi RA., *et al.* "Some effects of dietary vitamin B6 deficiency and 4-deoxypyridoxine on γ-aminobutyric acid metabolism in rat brain". *Journal of Neurochemistry* 19.3 (1972): 569-576.
- 9. Coursin DB. "Vitamin B6 and Brain Function in Animals and Man". Annals of the New York Academy of Sciences 166.1 (1969): 7-15.
- 10. Gale K. "Mechanisms of seizure control mediated by y-aminobutyric acid: Role of the substantia nigra". *Federation Proceedings* 44.8 (1985): 2414-2424.
- 11. Kaufman DL., *et al.* "Two forms of the gamma-aminobutyric acid synthetic enzyme glutamate decarboxylase have distinct intraneuronal distributions and cofactor interactions". *Journal of Neurochemistry* 56.2 (1991): 720-723.
- 12. Martin DL., *et al.* "Cofactor interactions and the regulation of glutamate decarboxylase activity". *Neurochemical Research* 16.3 (1991): 243-249.
- 13. Martin DL and Rimvall K. "Regulation of y-aminobutyric acid synthesis in the brain". Journal of Neurochemistry 60.2 (1993): 395-407.
- 14. LP Miller, *et al.* "Post-mortem changes implicate adenine nucleotides and pyridoxal-5'-phosphate in regulation of brain glutamate decarboxylase". *Nature* 266 (1977): 847-848.
- 15. Tews JK. "Pyridoxine deficiency and brain amino acids". Annals of the New York Academy of Sciences 166.1 (1969): 74-82.

Volume 3 Issue 8 August 2019 ©All rights reserved by Avinash Shankar., *et al.* 593