## Type 2 Diabetes and More Gene Panel: A Predictive Genomics Approach for a Polygenic Disease

## Amr TM Saeb\*

University Diabetes Center, College of Medicine, King Saud University, KSA \*Corresponding Author: Amr TM Saeb, University Diabetes Center, College of Medicine, King Saud University, KSA. E-mail: saeb.1@osu.edu

## Received: October 29, 2018; Published: March 28, 2019

Type 2 diabetes (T2D) is the leading cause of morbidity and mortality worldwide, and its incidence has increased by 50% in the past ten years. T2D consists of a series of impairments such as insulin resistance, insufficient insulin secretion, and dysregulated glucagon secretion; the combination of these factors leads to hyperglycemia. The disease is one of the world's oldest, being described in the historical records of ancient Egypt, Persia and India. T2D is an endemic metabolic syndrome with a higher prevalence in the Eastern Mediterranean Region, South-Eastern Asia, and the Arabian Peninsula. It has been observed that the Persian Gulf states have a higher prevalence than other Middle Eastern countries. This suggests that Arabs are at higher risk of developing T2D than other ethnicities.

Advances in the field of molecular genetics and genomics have boosted our knowledge of the genetic factors involved in this polygenic disease. Predictive genomics combines multiple fields, such as predictive and personalized medicine, genomics, and bioinformatics. It is a new discipline that deals with the imminent phenotypic outcomes of complex human diseases, such as T2D, and its complications. However, phenotypes can be influenced or significantly altered by environmental and nutritional factors, especially if detected or predicted early. Thus, predictive genetic profiling of susceptible individuals can help to reduce or reverse the pattern of diabetes and its complications. Predictive nutrigenomics can also help since it has the potential to modify the inflammatory response, antioxidant ability, antioxidant protection, detoxification ability, and several biological processes involved in T2D development and progress.

Recently, we designed and evaluated the Arab Diabetes Gene-Centric Array (ADGCA) that contains 643,745 SNPs including 50,617 diabetes associated SNPs. This array might serve for screening and predicting the incidence of T2D among susceptible individuals. However, genotyping methods are relatively old-fashioned and have several disadvantages. This was the reason for me to propose the "T2D and more gene panel" that target all exons, intron-exon boundaries, and UTRs of the genes involved in the pathophysiology of T2D, its complications and even the monogenic forms of diabetes.

Gene panels have several advantages that make them a better choice over genotyping arrays or even all exome sequencing. They have a deeper focus on all genes and gene regions associated with a specific disease. They allow a much higher sequencing depth, 2,000 - 10,000x, that enables the identification of novel and rare genetic variants. Also, they allow dealing with different types of samples with varying concentrations of DNA and conditions. They can contain all parts of the genes, both structural and regulatory regions, or selected important regions of the genes of interest. Additionally, gene panel workflows are more straightforward, less time consuming, and can easily be pooled and multiplexed; most importantly, they are reasonably less expensive than other genetic screening methods. Furthermore, in a population with a high T2D prevalence, it is better to design a panel than to perform the very costly whole exome sequencing. My extensive personal investigation of all genes involved in T2D lead me to classify these genes according to their ontology (Figure 1) as follows:

- 1) Lipid metabolism and lipid binding.
- 2) Glucose metabolism, transport, and binding.
- 3) Inflammatory response.
- 4) Immune response.
- 5) ATP binding and ion transport.
- 6) Signal transduction.
- 7) Angiotensin I converting process.
- 8) Neurological process.
- 9)  $\beta$ -cell related effects.
- 10) Oxidative stress.
- 11) DNA binding.
- 12) Protein binding.

- 13) Hormone-mediated processes.
- 14) Protein (amino acid) metabolism.
- 15) Insulin-like growth factor.
- 16) Transcription regulation process.
- 17) Insulin transcription, secretion, and binding.
- 18) General metabolism.
- 19) Others.

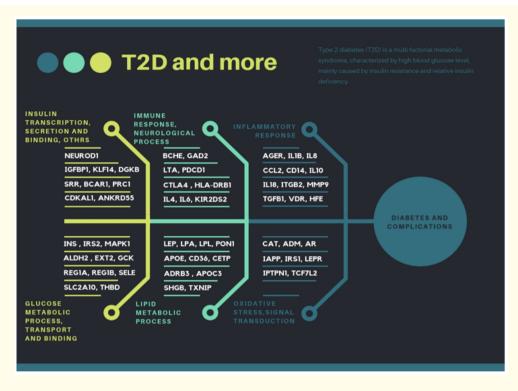



Figure 1: Fishbone diagram showing some of the genes associated with T2D, classified according to their ontology.

My suggested panel consists of 148 target genes with 4220 amplicons and target amplification size of 1.1 Mb (Table 1 and Supplementary Table 1). The data show that the target size is relatively high, this can be justified because T2D is a polygenic disease. The suggested gene panel will aid identifying T2D biologically relevant genetic variants, visualizing the impact of identified variants on the disease, and detecting both known and novel gene mutations (SNPs, indels, and CNVs).

| Name   | Chromosome | Number of Amplicons | <b>Overall Coverage</b> | Exon number |
|--------|------------|---------------------|-------------------------|-------------|
| PTGS2  | chr1       | 31                  | 1                       | 10          |
| TXNIP  | chr1       | 16                  | 1                       | 8           |
| SELE   | chr1       | 32                  | 1                       | 14          |
| CRP    | chr1       | 10                  | 1                       | 2           |
| IL10   | chr1       | 11                  | 0.857                   | 5           |
| PTPRC  | chr1       | 71                  | 0.968                   | 35          |
| LEPR   | chr1       | 59                  | 0.997                   | 24          |
| MTHFR  | chr1       | 48                  | 0.985                   | 12          |
| PBX1   | chr1       | 37                  | 0.966                   | 10          |
| PROX1  | chr1       | 38                  | 0.952                   | 6           |
| NOTCH2 | chr1       | 84                  | 1                       | 35          |
| CAMTA1 | chr1       | 70                  | 1                       | 26          |
| PDE4B  | chr1       | 40                  | 0.992                   | 20          |
| CXCL12 | chr10      | 29                  | 1                       | 9           |
| TCF7L2 | chr10      | 39                  | 1                       | 20          |
| GAD2   | chr10      | 33                  | 0.997                   | 18          |

 Table 1: Genetic description of "T2D and more" gene panel.

| HHEX    | chr10 | 12 | 0.936 | 4  |
|---------|-------|----|-------|----|
| ZMIZ1   | chr10 | 63 | 0.949 | 25 |
| VPS26A  | chr10 | 22 | 0.988 | 9  |
| CDC123  | chr10 | 22 | 1     | 13 |
| CAMK1D  | chr10 | 26 | 0.976 | 12 |
| NEUROG3 | chr10 | 7  | 0.987 | 2  |
| APOC3   | chr11 | 6  | 1     | 4  |
| EXT2    | chr11 | 36 | 0.998 | 17 |
| INS     | chr11 | 5  | 0.726 | 5  |
| IL18    | chr11 | 13 | 0.842 | 6  |
| ABCC8   | chr11 | 65 | 0.961 | 40 |
| KCNJ11  | chr11 | 16 | 0.907 | 3  |
| KCNQ1   | chr11 | 38 | 0.969 | 17 |
| ADM     | chr11 | 13 | 1     | 4  |
| САТ     | chr11 | 26 | 1     | 13 |
| MTNR1B  | chr11 | 11 | 0.99  | 2  |
| ARAP1   | chr11 | 65 | 0.973 | 36 |
| CYP27B1 | chr12 | 17 | 0.995 | 9  |
| ALDH2   | chr12 | 27 | 1     | 13 |
| VDR     | chr12 | 35 | 0.998 | 12 |
| IAPP    | chr12 | 12 | 0.984 | 3  |
| TSPAN8  | chr12 | 13 | 1     | 9  |
| LGR5    | chr12 | 37 | 0.996 | 18 |
| HMGA2   | chr12 | 25 | 0.998 | 6  |
| CCND2   | chr12 | 30 | 1     | 5  |
| HIGD1C  | chr12 | 4  | 1     | 3  |
| IRS2    | chr13 | 27 | 0.86  | 2  |
| SPRY2   | chr13 | 11 | 1     | 2  |
| KCTD12  | chr13 | 26 | 0.998 | 1  |
| PRC1    | chr15 | 30 | 0.998 | 16 |
| AP3S2   | chr15 | 31 | 0.99  | 8  |
| ZFAND6  | chr15 | 23 | 0.903 | 15 |
| HMG20A  | chr15 | 29 | 0.998 | 11 |
| C2CD4A  | chr15 | 14 | 0.802 | 2  |
| CCDC33  | chr15 | 42 | 0.978 | 24 |
| CETP    | chr16 | 25 | 0.984 | 16 |
| FTO     | chr16 | 28 | 0.996 | 9  |
| PRKCB   | chr16 | 50 | 0.958 | 18 |
| BCAR1   | chr16 | 43 | 0.985 | 17 |
| SLC12A3 | chr16 | 55 | 0.978 | 28 |
| MIR6863 | chr16 | 2  | 1     | 1  |
| ABP     | chr17 | 17 | 0.966 | 15 |
| CCL2    | chr17 | 7  | 1     | 3  |
| CCL5    | chr17 | 6  | 0.748 | 4  |
| ACE     | chr17 | 52 | 0.991 | 26 |
| HNF1B   | chr17 | 22 | 0.996 | 10 |
| SRR     | chr17 | 19 | 0.999 | 8  |
| RAI1    | chr17 | 41 | 0.905 | 6  |

*Citation:* Amr TM Saeb. "Type 2 Diabetes and More Gene Panel: A Predictive Genomics Approach for a Polygenic Disease". *EC Diabetes and Metabolic Research* 3.1 (2019): 01-05.

| SREBF1           | chr17          | 42       | 0.979 | 20       |
|------------------|----------------|----------|-------|----------|
| MC4R             | chr18          | 6        | 1     | 1        |
| APOE             | chr19          | 11       | 0.997 | 4        |
| TGFB1            | chr19          | 18       | 0.898 | 7        |
| CD158B2          | chr19          | 16       | 1     | 8        |
| AKT2             | chr19          | 42       | 0.972 | 15       |
| GIPR             | chr19          | 24       | 0.986 | 14       |
| IL1RN            | chr2           | 17       | 1     | 8        |
| REG1A            | chr2           | 11       | 1     | 6        |
| REG1B            | chr2           | 10       | 1     | 6        |
| IL1B             | chr2           | 14       | 1     | 7        |
| CTLA4            | chr2           | 11       | 1     | 4        |
| PDCD1            | chr2           | 17       | 0.99  | 5        |
| IRS1             | chr2           | 36       | 0.984 | 2        |
| CAPN10           | chr2           | 28       | 0.943 | 12       |
| NEUROD1          | chr2           | 14       | 1     | 2        |
| GRB14            | chr2           | 23       | 0.889 | 14       |
| RBMS1            | chr2           | 32       | 1     | 15       |
| BCL11A           | chr2           | 35       | 1     | 7        |
| THADA            | chr2           | 75       | 0.99  | 42       |
| GCKR             | chr2           | 27       | 0.99  | 19       |
| CXCR4            | chr2           | 10       | 1     | 3        |
| HNF4A            | chr20          | 37       | 0.998 | 15       |
| SLC2A10          | chr20          | 23       | 0.977 | 5        |
| THBD             | chr20          | 17       | 1     | 1        |
| MMP9             | chr20          | 22       | 0.968 | 13       |
| PTPN1            | chr20          | 26       | 1     | 10       |
| TRIB3            | chr20          | 15       | 0.953 | 4        |
| ITGB2            | chr21          | 35       | 0.993 | 17       |
| MAPK1            | chr21<br>chr22 | 33       | 0.996 | 10       |
| SREBF2           | chr22          | 49       | 0.990 | 22       |
| PPARG            | chr3           | 20       | 0.987 | 10       |
| BCHE             | chr3           | 14       | 1     | 4        |
|                  |                |          |       |          |
| GHRL<br>IGF2BP2  | chr3           | 12<br>36 | 0.972 | 11<br>16 |
|                  | chr3           | 56       | 0.972 | 22       |
| ADCY5<br>ADAMTS9 | chr3<br>chr3   | 73       | 0.995 | 40       |
| UBE2E2           | chr3           | 15       | 0.993 | 40<br>6  |
| IL8              | chr4           | 13       | 1     | 4        |
|                  |                |          |       |          |
| WFS1             | chr4           | 27       | 0.971 | 9        |
| MAEA             | chr4           | 23       | 1     |          |
| CD14             | chr5           | 11       | 0.987 | 6        |
| IL13             | chr5           | 10       | 1     | 4        |
| IL4              | chr5           | 7        | 1     | 4        |
| AHH              | chr5           | 37       | 0.989 | 12       |
| ANKRD55          | chr5           | 23       | 0.999 | 12       |
| LPA              | chr6           | 56       | 0.672 | 40       |
| TNF              | chr6           | 12       | 1     | 4        |

04

| AGER     | chr6 | 14 | 0.993 | 18 |
|----------|------|----|-------|----|
| HFE      | chr6 | 14 | 0.955 | 8  |
| HLA-DRB1 | chr6 | 13 | 0.895 | 8  |
| LTA      | chr6 | 10 | 0.918 | 5  |
| KCNK16   | chr6 | 14 | 1     | 8  |
| ZFAND3   | chr6 | 18 | 0.884 | 6  |
| CDKAL1   | chr6 | 34 | 0.932 | 16 |
| ENPP1    | chr6 | 59 | 0.996 | 25 |
| SUM04    | chr6 | 5  | 1     | 1  |
| CD36     | chr7 | 43 | 0.993 | 22 |
| LEP      | chr7 | 18 | 0.995 | 3  |
| PON1     | chr7 | 18 | 0.994 | 9  |
| GCK      | chr7 | 29 | 0.965 | 12 |
| IL6      | chr7 | 10 | 0.969 | 5  |
| NOS3     | chr7 | 52 | 0.991 | 31 |
| NPY      | chr7 | 8  | 1     | 4  |
| CDK5     | chr7 | 15 | 1     | 13 |
| IGFBP1   | chr7 | 12 | 0.971 | 4  |
| SERPINE1 | chr7 | 26 | 1     | 9  |
| JAZF1    | chr7 | 16 | 0.893 | 5  |
| KLF14    | chr7 | 6  | 0.749 | 1  |
| DGKB     | chr7 | 64 | 0.992 | 26 |
| ELMO1    | chr7 | 57 | 1     | 26 |
| ADRB3    | chr8 | 14 | 0.993 | 2  |
| LPL      | chr8 | 29 | 1     | 10 |
| SLC30A8  | chr8 | 38 | 0.976 | 16 |
| TP53INP1 | chr8 | 26 | 0.971 | 5  |
| ANK1     | chr8 | 91 | 0.976 | 48 |
| TLE1     | chr9 | 39 | 1     | 20 |
| TLE4     | chr9 | 52 | 0.997 | 24 |
| CDKN2A   | chr9 | 15 | 0.981 | 6  |
| CDKN2B   | chr9 | 18 | 1     | 3  |
| PTPRD    | chr9 | 97 | 0.987 | 50 |
| GLIS3    | chr9 | 45 | 0.996 | 12 |
| AR       | chrX | 51 | 1     | 9  |
| ACE2     | chrX | 39 | 1     | 19 |

There is no doubt that T2D is an important and costly disease in all aspects, both altruistic and materialistic. Globally, countries spend 825 billion of dollars per year in diabetes, with the most significant contributors being China (\$170 billion), the USA (\$105 billion), and India (\$73 billion). Additionally, if existing trends remain, over 700 million adults worldwide will be affected by diabetes in 2025. Every scientist, expert, and physician no matter their locations should put as more effort as they can in combating this disease. Here, I present a proposal for a gene panel that can be used for predicting and screening T2D and its complications by interested parties worldwide. And even though I cannot implement it myself because of funding and logistic reasons, I am willing to help any interested party providing all the technical details they might need to implement it and help alleviate this hideous illness and its complications.

**Supplementary Table** 

Volume 3 Issue 1 April 2019 © All rights reserved by Amr TM Saeb. 05