

Microbes and Bacilli-Brucellosis Lymph Node

Anubha Bajaj*

Department of Histopathology, Panjab University, A.B. Diagnostics, India

*Corresponding Author: Anubha Bajaj, Department of Histopathology, Panjab University, A.B. Diagnostics, India.

Received: October 07, 2025; Published: October 28, 2025

Brucellosis is engendered due to infection with bacteria *Brucella abortus, Brucella melitensis* or *Brucella suis*. The infection may be occupational or associated with consumption of dairy products as milk and cheese.

Brucella organisms emerge as miniature aerobic, intracellular coccobacilli. The bacteria aggregate within reproductive organs of host animals and consequently engender abortion and infertility.

The bacteria are excreted within urine, milk, placental fluid and various animal fluids. Several species are detected although organisms pathogenic to humans emerge as *Brucella melitensis* confined to sheep, *Brucella suis* confined to pigs, *Brucella abortus* confined to cattle and *Brucella canis* confined to dogs. Generally, *Brucella melitensis* and *Brucella suis* are significantly pathogenic.

Incubation period varies from three days to several weeks. Ingested and phagocytosed *Brucella* organisms ingress the intestinal submucosa with subsequent transportation into lymphoid tissue by macrophages [1,2].

Vascular circulation of the organisms is followed by rapid containment of bacteria into circulating neutrophils and macrophages, a process which activates innumerable mechanisms circumventing bactericidal responses. Besides, the bacteria may not be able to activate alternative complement system [2,3].

Brucella organisms travel into the lymphatic system in concurrence with localized replication and propagation within the hepatic or renal parenchyma, spleen, breast tissue or joints. Thereby, localized and systemic infection may ensue [2,3].

Clinical symptoms persist for several months and chronic infection with brucellosis may persist for years [3,4].

Clinical representation of brucellosis simulates the symptoms of various bacterial and viral infections. Infected subjects may expound pyrexia, hepatosplenomegaly and exceptionally, lymphadenopathy [3,4].

Upon microscopy, the lymph node depicts follicular hyperplasia, aggregates of epithelioid histiocytes and configuration of enlarged non-caseous granulomas. An infiltration of eosinophils, plasma cells and immunoblasts may be observed [3,4].

Morphological features	Progressive transformation of germinal centre	Nodular predomi- nant Hodgkin's lymphoma(A/B)	Lymphocyte rich classic Hodgkin's lymphoma, nodular variant
Follicles			
Magnitude	Scattered large nodules	Nodules larger than PTGC	Moderately enlarged
Germinal centre	Variably disrupted with involution	Absent	Present in tumour nodules
Centrocytes & centroblasts	Decreased, scattered BCL2-	Absent	In residual GCs
Mantle zone lymphocytes	Inward growth into GC, BCL2+, IgD+	Absent	Expanded
RFH	Present	Focal/absent	Focal/absent
Immuno-architecture			
T follicular helper cell rosettes (PD-1+)	Absent	Present	May be present
IgG4+ plasma cells	~50% instances	Absent	Absent
Large B cells	Rare immunoblasts	LP (popcorn cells)	Present, HRS cells
Immunophenotype	IgG+	CD20+, CD45+, OCT2+, EMA+/-, PAX5+ strong, IgD-/+	CD30+, CD45-, CD15+, PAX5+ dim, OCT2-, EMA-, CD20

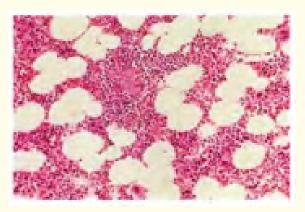
Table: Differentiation between progressive transformation of germinal centres and lymphomas with large nodules [5,6].

PTGC: Progressively Transformed Germinal Centre; RFH: Reactive Follicular Hyperplasia; GC: Germinal Centre; HRS: Hodgkin's Reed Sternberg; LP: Lymphocyte Predominant; EMA: Epithelial Membrane Antigen.

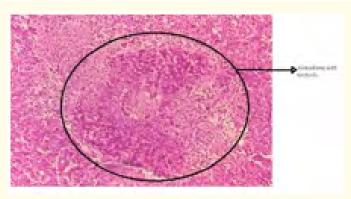
Brucellosis requires segregation from conditions as Hodgkin's lymphoma, infectious mononucleosis induced by Epstein Barr virus infection, infective endocarditis, influenza, leptospirosis, malaria, mechanical pain induced within the back, meningitis, pneumonia due to mycoplasma infection, viral hepatitis, enteric fever, acute epididymitis and urinary tract infection (UTI) [7,8].

Brucellosis may be appropriately discerned by diverse serological assays, culture and sensitivity and polymerase chain reaction [7,8].

Precise medical and surgical management of brucellosis is necessitated in order to achieve rapid disease control and circumvent complications or disease relapse. Antibiotics as doxycycline may be employed singularly or in conjunction with streptomycin, rifampin, gentamicin or sulfamethoxazole/trimethoprim as therapeutic agents competent in eradicating brucellosis. Employment of a singular antibiotic is associated with significant proportionate relapse [7,8].


Uncomplicated infections may be suitably addressed by doxycycline monotherapy although disease relapse is encountered in \sim 40% subjects. Alternatively, rifampin or trimethoprim/sulfamethoxazole may be employed in paediatric subjects [8,9].

Pregnant females may be administered rifampin and trimethoprim/sulfamethoxazole may be added postpartum. Spondylitis or sacroiliitis occurring due to brucellosis may be managed with doxycycline and rifampin along with an aminoglycoside.


Additionally, symptomatic therapy with antipyretics and analgesics appears beneficial. Corticosteroids appear advantageous in treating meningitis due to brucellosis [8,9].

Surgical intervention appears beneficial in treating endocarditis due to brucellosis. Infected heart valves of subjects with endocarditis necessitate replacement. Repair of aortic and aortopulmonary fistulas may be employed. Incision and drainage of pyogenic joint effusions or paraspinal abscess may be adopted [8,9].

Surgical debridement and bone grafting of individuals with spondylitis may be advantageously employed. Besides, accidental exposure to cow vaccine may induce brucellosis in humans [8,9].

Figure 1: Brucellosis delineating aggregates of epithelioid histiocytes, enlarged non caseous granulomas along with infiltration of eosinophils, plasms cells and immunoblasts. Aggregates of mature adipose tissue cells are encountered [10].

Figure 2: Brucellosis depicting an amalgamation of epithelioid histiocytes, enlarged non caseous granulomas, parenchymal infiltration of eosinophils, plasma cells and immunoblasts [11].

Bibliography

- 1. Hayoun MA., et al. "Brucellosis". Stat Pearls International. Treasure Island, Florida (2025).
- 2. Lavigne JP., et al. "What's new in the diagnosis and treatment of human brucellosis?" Infectious Diseases Now 55.7 (2025): 105121.

- 3. Dadar M., *et al.* "Comprehensive study on human brucellosis seroprevalence and Brucella species distribution in Iran (1970-2023)". *Microbial Pathogenesis* 198 (2025): 107137.
- 4. Dourado A., et al. "Brucellosis, the forgotten endemic: a clinical case report". Cureus 17.1 (2025): e77761.
- 5. So M., *et al*. "Pulmonary lymphomatoid granulomatosis in a patient with long-term use of a tumour necrosis factor-α inhibitor". *BMJ Case Reports* 16.5 (2023): e254211.
- 6. Sarfraz S., et al. "Lymphomatoid granulomatosis: a case report and literature review of a rare pediatric disorder from Pakistan". Journal of Pediatric Hematology/Oncology 45.7 (2023): e927-e930.
- 7. Bosilkovski M., *et al.* "Human brucellosis in Macedonia 10 years of clinical experience in endemic region". *Croatian Medical Journal* 51.4 (2010): 327-336.
- 8. Bosilkovski M and Watham MA. "Brucellosis: epidemiology, microbiology, clinical manifestations and diagnosis". UpToDate (2024).
- 9. Di Bonaventura G., et al. "Microbiological laboratory diagnosis of human brucellosis: an overview". Pathogens 10.12 (2021): 1623.
- 10. Image 1 Courtesy: Annals of Saudi Medicine.
- 11. Image 2 Courtesy: Wikidoc.com.

Volume 24 Issue 11 November 2025 ©All rights reserved by Anubha Bajaj.