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Advances in bone regeneration have opened up new possibilities for the treatment of localized bone defects (LBDs), conditions that 
can affect any segment of the skeleton, including the maxillofacial area, as a consequence of trauma, disease or atrophy. As LBDs may heav-
ily impact organ function and thus take a heavy toll on many aspects of patients’ lives, better performing and more predictable approaches 
to promote the regeneration of lost tissues are sorely needed. Of particular interest are non-surgical approaches, which can spare patients 
from the additional morbidity of undergoing surgery to harvest or implant grafts or tissue substitutes into their LBDs. Electromagnetic 
Fields (EMF) are known to affect cell function and to promote osteoblast maturation and differentiation in vitro and in vivo and are there-
fore candidates for such therapies. Several papers have been published reporting the effects of EMF stimulation, mostly by Pulsed EMF 
(PEMF), on osteoblastic cell lines, e.g. MC3T3 (Li K 2014) or MG63 [1], or primary osteoblasts [2-5] and PEMFs have been proposed to 
prevent bone loss in animal models of tail suspension or ovariectomy-induced osteoporosis [6]. Although reports suggest that PEMFs can 
be used to treat non- or delayed unions or osteotomies [7,8], their clinical application has been significantly hindered and delayed by our 
poor understanding of its underlying mechanisms and therefore by difficulties in defining consistent sets of parameters to be applied 
across a number of patients (Li K 2014). A systematic review by Griffin., et al. [9] showed that evidence suggested a beneficial use of EMFs 
for the treatment of non-unions but there was a high degree of heterogeneity in the studies they examined, preventing more definitive 
conclusions. A vast range of frequencies, intensities, durations of exposure, pulses [10-12] or even waveforms [13] have been investigated 
and no consensus has been thus far reached. Studies have investigated frequencies ranging from few Hz to over 100 Hz and intensities of 
up to 4.5 mT or more, and the range of tested parameters appear to be more often associated to the constraints of the equipment used in 
the studies than to scientific evidence. A few important papers have however been published in the last two years, generating evidence 
that supports the idea that the effects of PEMFs require the existence of primary cilia. These manuscripts have brought specific cell sub-
structures to the limelight, which could prove of immense value for a better understanding of how EMFs work. Primary cilia are solitary 
organelles that most cell types display depending on their differentiation state [14]. Their structure comprises an axoneme of 9 doublet 
microtubules (a 9+0 structure) that differentiates them from motile cilia, which possess a 9+2 structure, i.e. they possess a central doublet 
of microtubules, which, together with their associated proteins, is responsible for motility [15]. The group of Yan., et al. determined that 
0.6 mT, 50 Hz PEMFs yielded the most effects in primary rat calvaria cells, in terms of cell proliferation, colony formation, mineralization 
nodules, and expression of differentiation markers. Cellular effects of PEMF however were abrogated by siRNA inhibition of intraflagellar 
transport protein IFT88, which is necessary for the formation of primary cilia [16].

Long believed to be inert structures, the idea has been gradually developed that primary cilia play a role in controlling cell division, 
possibly by sequestering centrioles (which is consistent with the observation that primary cilia are mostly possessed by quiescent cells), 
and that they are important sensory structures. With their antenna-like morphology they are indeed suited to sense mechanical stimuli, 
such as in osteocyte-mediated mechanoception [17] and mechanical forces were believed to be transduced through Ca2+ influx into the 
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cilium upon its deformation. Delling., et al. have recently proven that primary cilia do not require calcium signaling, by using a transgenic 
mouse model expressing a calcium indicator in cilia [18]. Cilia however have long been known to preferentially harbour several other 
receptor structures, such as PDGFR [19]. More recently, primary cilia have been shown to play a regulatory role in clathrin-dependent en-
docytosis (CDE), which occurs mostly in the pocket region at the base of cilia [20,21]. Interestingly, cilia-associated CDE has been shown to 
be relevant for TGF-β signaling, as TGF- β receptors have been localized at the tip of primary cilia in fibroblasts, and receptor stimulation 
activated SMAD2/3 and ERK1/2 at the cilium base. Conversely, inhibition of CDE or stunning of primary cilia decreased TGF-β signalling 
[22]. It has been furthermore recently shown that 0.6 mT 50 Hz PEMFs increased BMP-Smad1/5/8 signaling in primary rat calvaria cells 
and BMPRII silencing inhibited the effects of PEMFs on osteoblasts [23]. Moreover, PEMFs up-regulated the expression of BMPRII at the 
base of the cilium, and cilium abrogation by knockdown of IFT88 inhibited PEMFs effects on BMPRII. Interestingly, 75 Hz 2.5 mT PEMFs 
have been shown to up-regulate the expression of A2a and A3AR adenosine receptors in hFOB 1.19 osteoblastic cells [24]. Not much is 
known about the localization of adenosine receptors at the base of primary cilia, but it is possible to see a common denominator here and 
hypothesize that a relevant part of PEMFs action is mediated by up-regulation of membrane trafficking and therefore membrane recep-
tors and that, given the important role of primary cilia in organizing transmembrane structures, primary cilia are required for PEMF activ-
ity in bone cells and in other cell types. Further research should focus on elucidating these mechanisms as they may represent the key to 
unlock the potential of electromagnetic fields in several clinical applications, not least in bone regeneration. 
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